IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224023740.html
   My bibliography  Save this article

A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model

Author

Listed:
  • Jia, Rui
  • Ge, Mingwei
  • Zhang, Ziliang
  • Li, Xintao
  • Du, Bowen

Abstract

Accurate assessment of the wake effect of wind farm clusters is of great significance for the development of wind power bases, yet there is currently a deficiency in numerical simulation methods with high accuracy and simple modeling. To address this issue, a numerical simulation framework for large wind-farm wakes based on a wind farm parameterization model is proposed, and is then implemented based on the open-source CFD software OpenFOAM. In this framework, a newly proposed wind farm equivalent roughness model is adopted to parameterize wind farms and incorporated into the simulation via the wall stress model. To validate the method, the large-eddy simulation based on the actuator disk model resolving all the turbines in the wind farm is taken as a benchmark. Thirty two cases including spanwise infinite wind farms and finite wind farms with different streamwise turbine spacings, spanwise turbine spacings, wind turbine thrust coefficients, and roughness lengths of ground surface are set to analyze the sensitivity of the framework to different wind farm parameters. Results show that the proposed method predicts the velocity deficit and turbulence intensity downstream of the wind farm accurately. Compared to the classical wake superposition model, the prediction accuracy of the velocity deficit is improved by more than 30 %. Furthermore, without resolving the turbines using fine mesh, the framework shows a high potential to reduce computational costs compared with the turbine-resolved simulation.

Suggested Citation

  • Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023740
    DOI: 10.1016/j.energy.2024.132600
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224023740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dayal, Kunal K. & Bellon, Gilles & Cater, John E. & Kingan, Michael J. & Sharma, Rajnish N., 2021. "High-resolution mesoscale wind-resource assessment of Fiji using the Weather Research and Forecasting (WRF) model," Energy, Elsevier, vol. 232(C).
    2. Al-Shammari, Eiman Tamah & Shamshirband, Shahaboddin & Petković, Dalibor & Zalnezhad, Erfan & Yee, Por Lip & Taher, Ros Suraya & Ćojbašić, Žarko, 2016. "Comparative study of clustering methods for wake effect analysis in wind farm," Energy, Elsevier, vol. 95(C), pages 573-579.
    3. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    4. Hamlaoui, M.N. & Smaili, A. & Dobrev, I. & Pereira, M. & Fellouah, H. & Khelladi, S., 2022. "Numerical and experimental investigations of HAWT near wake predictions using Particle Image Velocimetry and Actuator Disk Method," Energy, Elsevier, vol. 238(PB).
    5. Zhang, Jincheng & Zhao, Xiaowei, 2020. "Quantification of parameter uncertainty in wind farm wake modeling," Energy, Elsevier, vol. 196(C).
    6. Fleming, Paul A. & Gebraad, Pieter M.O. & Lee, Sang & van Wingerden, Jan-Willem & Johnson, Kathryn & Churchfield, Matt & Michalakes, John & Spalart, Philippe & Moriarty, Patrick, 2014. "Evaluating techniques for redirecting turbine wakes using SOWFA," Renewable Energy, Elsevier, vol. 70(C), pages 211-218.
    7. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Publisher Correction: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(3), pages 251-251, March.
    8. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    9. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(1), pages 26-34, January.
    10. Zhaobin Li & Xiaolei Yang, 2020. "Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes," Energies, MDPI, vol. 13(14), pages 1-18, July.
    11. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    12. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    13. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    14. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    15. Wang, Qiang & Luo, Kun & Yuan, Renyu & Zhang, Sanxia & Fan, Jianren, 2019. "Wake and performance interference between adjacent wind farms: Case study of Xinjiang in China by means of mesoscale simulations," Energy, Elsevier, vol. 166(C), pages 1168-1180.
    16. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    17. Michael R. Davidson & Da Zhang & Weiming Xiong & Xiliang Zhang & Valerie J. Karplus, 2016. "Modelling the potential for wind energy integration on China’s coal-heavy electricity grid," Nature Energy, Nature, vol. 1(7), pages 1-7, July.
    18. Allan, Grant & Comerford, David & Connolly, Kevin & McGregor, Peter & Ross, Andrew G., 2020. "The economic and environmental impacts of UK offshore wind development: The importance of local content," Energy, Elsevier, vol. 199(C).
    19. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Yang, Xiang I.A., 2019. "A two-dimensional Jensen model with a Gaussian-shaped velocity deficit," Renewable Energy, Elsevier, vol. 141(C), pages 46-56.
    20. Li, Li & Huang, Zhi & Ge, Mingwei & Zhang, Qiying, 2022. "A novel three-dimensional analytical model of the added streamwise turbulence intensity for wind-turbine wakes," Energy, Elsevier, vol. 238(PB).
    21. Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling, Ziyan & Zhao, Zhenzhou & Liu, Yige & Liu, Huiwen & Ali, Kashif & Liu, Yan & Wen, Yifan & Wang, Dingding & Li, Shijun & Su, Chunhao, 2024. "Multi-objective layout optimization for wind farms based on non-uniformly distributed turbulence and a new three-dimensional multiple wake model," Renewable Energy, Elsevier, vol. 227(C).
    2. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
    3. Ma, Hongliang & Ge, Mingwei & Wu, Guangxing & Du, Bowen & Liu, Yongqian, 2021. "Formulas of the optimized yaw angles for cooperative control of wind farms with aligned turbines to maximize the power production," Applied Energy, Elsevier, vol. 303(C).
    4. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    5. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    6. Aditya H. Bhatt & Mireille Rodrigues & Federico Bernardoni & Stefano Leonardi & Armin Zare, 2023. "Stochastic Dynamical Modeling of Wind Farm Turbulence," Energies, MDPI, vol. 16(19), pages 1-24, September.
    7. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
    8. Khan, Mehtab Ahmad & Javed, Adeel & Shakir, Sehar & Syed, Abdul Haseeb, 2021. "Optimization of a wind farm by coupled actuator disk and mesoscale models to mitigate neighboring wind farm wake interference from repowering perspective," Applied Energy, Elsevier, vol. 298(C).
    9. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    10. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    11. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    12. Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
    13. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    14. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    15. Li, Li & Wang, Bing & Ge, Mingwei & Huang, Zhi & Li, Xintao & Liu, Yongqian, 2023. "A novel superposition method for streamwise turbulence intensity of wind-turbine wakes," Energy, Elsevier, vol. 276(C).
    16. Yang, Haoze & Ge, Mingwei & Gu, Bo & Du, Bowen & Liu, Yongqian, 2022. "The effect of swell on marine atmospheric boundary layer and the operation of an offshore wind turbine," Energy, Elsevier, vol. 244(PB).
    17. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    18. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    19. Syed, Abdul Haseeb & Javed, Adeel & Asim Feroz, Raja M. & Calhoun, Ronald, 2020. "Partial repowering analysis of a wind farm by turbine hub height variation to mitigate neighboring wind farm wake interference using mesoscale simulations," Applied Energy, Elsevier, vol. 268(C).
    20. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224023740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.