IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221019083.html
   My bibliography  Save this article

Numerical and experimental investigations of HAWT near wake predictions using Particle Image Velocimetry and Actuator Disk Method

Author

Listed:
  • Hamlaoui, M.N.
  • Smaili, A.
  • Dobrev, I.
  • Pereira, M.
  • Fellouah, H.
  • Khelladi, S.

Abstract

The wake flow characteristics downstream from the rotor blade of small Horizontal Axis Wind Turbine (HAWT) have been investigated using Particle Image Velocimetry and an Actuator Disk Method developed in OpenFOAM at low Reynolds number of Re ≈ 47 000 for four TSR values of 6, 5.5, 5 and 4.5. The wind tunnel measured mean velocity distributions along the rotor radius, for two TSRs of 5.5 and 4.5 corresponding respectively to the optimum operating point of the HAWT and the rotational augmentation effect appearance, have been compared quantitatively at five downstream planes of 0.225D, 0.45D, 0.9D, 1.8D and 2.4D in order to investigate the near wake evolution and the nacelle effect on the flow field characteristics. At a distance of 0.225D downstream from the rotor mostly affected by the rotor blade predicted performances, the 3D corrections for stall delay phenomenon consideration have provided noticeable improvements for the predicted velocity field near the root of the rotor blade especially the axial and tangential velocity components. However, by getting further from the rotor i.e. at a distance of 2.4D, the flow field is mostly affected by the nacelle and the velocity field has loosed its structured distribution which has been explained as the wake expansion occurrence. The near wake upper limit has been located at a distance of 1.8

Suggested Citation

  • Hamlaoui, M.N. & Smaili, A. & Dobrev, I. & Pereira, M. & Fellouah, H. & Khelladi, S., 2022. "Numerical and experimental investigations of HAWT near wake predictions using Particle Image Velocimetry and Actuator Disk Method," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019083
    DOI: 10.1016/j.energy.2021.121660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221019083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amini, Shayesteh & Golzarian, Mahmood Reza & Mahmoodi, Esmail & Jeromin, Andres & Abbaspour-Fard, Mohammad Hossein, 2021. "Numerical simulation of the Mexico wind turbine using the actuator disk model along with the 3D correction of aerodynamic coefficients in OpenFOAM," Renewable Energy, Elsevier, vol. 163(C), pages 2029-2036.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. Sarlak, H. & Nishino, T. & Martínez-Tossas, L.A. & Meneveau, C. & Sørensen, J.N., 2016. "Assessment of blockage effects on the wake characteristics and power of wind turbines," Renewable Energy, Elsevier, vol. 93(C), pages 340-352.
    4. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Zhu, Chunling & Wang, Tongguang, 2020. "Effects of turbulence modelling in AD/RANS simulations of single wind & tidal turbine wakes and double wake interactions," Energy, Elsevier, vol. 208(C).
    5. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin Liu & Lailong Li & Shaoping Shi & Xinming Chen & Songhua Wu & Wenxin Lao, 2021. "Three-Dimensional LiDAR Wake Measurements in an Offshore Wind Farm and Comparison with Gaussian and AL Wake Models," Energies, MDPI, vol. 14(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    2. Asmuth, Henrik & Navarro Diaz, Gonzalo P. & Madsen, Helge Aagaard & Branlard, Emmanuel & Meyer Forsting, Alexander R. & Nilsson, Karl & Jonkman, Jason & Ivanell, Stefan, 2022. "Wind turbine response in waked inflow: A modelling benchmark against full-scale measurements," Renewable Energy, Elsevier, vol. 191(C), pages 868-887.
    3. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    4. Fan Zhang & Juchuan Dai & Deshun Liu & Linxing Li & Xin Long, 2019. "Investigation of the Pitch Load of Large-Scale Wind Turbines Using Field SCADA Data," Energies, MDPI, vol. 12(3), pages 1-20, February.
    5. Arabgolarcheh, Alireza & Rouhollahi, Amirhossein & Benini, Ernesto, 2023. "Analysis of middle-to-far wake behind floating offshore wind turbines in the presence of multiple platform motions," Renewable Energy, Elsevier, vol. 208(C), pages 546-560.
    6. Rivera-Arreba, Irene & Li, Zhaobin & Yang, Xiaolei & Bachynski-Polić, Erin E., 2024. "Comparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakes," Renewable Energy, Elsevier, vol. 221(C).
    7. Antonio Crespo, 2023. "Computational Fluid Dynamic Models of Wind Turbine Wakes," Energies, MDPI, vol. 16(4), pages 1-3, February.
    8. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    9. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    10. Jagdeep Singh & Jahrul M Alam, 2023. "Large-Eddy Simulation of Utility-Scale Wind Farm Sited over Complex Terrain," Energies, MDPI, vol. 16(16), pages 1-26, August.
    11. Andrés Guggeri & Martín Draper, 2019. "Large Eddy Simulation of an Onshore Wind Farm with the Actuator Line Model Including Wind Turbine’s Control below and above Rated Wind Speed," Energies, MDPI, vol. 12(18), pages 1-21, September.
    12. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    13. Daniel Houck & Edwin A. Cowen, 2022. "Power and Flow Analysis of Axial Induction Control in an Array of Model-Scale Wind Turbines," Energies, MDPI, vol. 15(15), pages 1-27, July.
    14. Shuolin Xiao & Di Yang, 2019. "Large-Eddy Simulation-Based Study of Effect of Swell-Induced Pitch Motion on Wake-Flow Statistics and Power Extraction of Offshore Wind Turbines," Energies, MDPI, vol. 12(7), pages 1-17, April.
    15. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    16. Abdelsalam, Ali M. & El-Askary, W.A. & Kotb, M.A. & Sakr, I.M., 2021. "Experimental study on small scale horizontal axis wind turbine of analytically-optimized blade with linearized chord twist angle profile," Energy, Elsevier, vol. 216(C).
    17. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
    18. Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
    19. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    20. Fan, Shuanglong & Liu, Zhenqing, 2023. "Proposal of fully-coupled actuated disk model for wind turbine operation modeling in turbulent flow field due to complex topography," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221019083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.