IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012089.html
   My bibliography  Save this article

Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models

Author

Listed:
  • Anagnostopoulos, Sokratis J.
  • Bauer, Jens
  • Clare, Mariana C.A.
  • Piggott, Matthew D.

Abstract

Wind farm modelling is an area of rapidly increasing interest with numerous analytical and computational-based approaches developed to extend the margins of wind farm efficiency and maximise power production. In this work, we present the novel ML framework WakeNet, which reproduces generalised 2D turbine wake velocity fields at hub-height, with a mean accuracy of 99.8% compared to the solution calculated by the state-of-the-art wind farm modelling software FLORIS. As the generation of sufficient high-fidelity data for network training purposes can be cost-prohibitive, the utility of multi-fidelity transfer learning has also been investigated. Specifically, a network pre-trained on the low-fidelity Gaussian wake model is fine-tuned in order to obtain accurate wake results for the mid-fidelity Curl wake model. The overall performance of WakeNet is validated on various wake steering control and layout optimisation scenarios, obtaining at least 90% of the power gained by the FLORIS optimiser. Moreover, the Curl-based WakeNet provides similar power gains to FLORIS, two orders of magnitude faster. These promising results show that generalised wake modelling with ML tools can be accurate enough to contribute towards robust real-time active yaw and layout optimisation under uncertainty, while producing realistic optimised configurations at a fraction of the computational cost.

Suggested Citation

  • Anagnostopoulos, Sokratis J. & Bauer, Jens & Clare, Mariana C.A. & Piggott, Matthew D., 2023. "Accelerated wind farm yaw and layout optimisation with multi-fidelity deep transfer learning wake models," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089
    DOI: 10.1016/j.renene.2023.119293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pawar, Suraj & Sharma, Ashesh & Vijayakumar, Ganesh & Bay, Chrstopher J. & Yellapantula, Shashank & San, Omer, 2022. "Towards multi-fidelity deep learning of wind turbine wakes," Renewable Energy, Elsevier, vol. 200(C), pages 867-879.
    2. Ti, Zilong & Deng, Xiao Wei & Yang, Hongxing, 2020. "Wake modeling of wind turbines using machine learning," Applied Energy, Elsevier, vol. 257(C).
    3. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(1), pages 26-34, January.
    4. Dou, Bingzheng & Qu, Timing & Lei, Liping & Zeng, Pan, 2020. "Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model," Energy, Elsevier, vol. 209(C).
    5. Antonio Cioffi & Claudia Muscari & Paolo Schito & Alberto Zasso, 2020. "A Steady-State Wind Farm Wake Model Implemented in OpenFAST," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. J. K. Lundquist & K. K. DuVivier & D. Kaffine & J. M. Tomaszewski, 2019. "Publisher Correction: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development," Nature Energy, Nature, vol. 4(3), pages 251-251, March.
    7. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Guan & Feng, Yaojing & Ma, Zi-Qian & Li, Xueping, 2024. "An asynchronous distributed optimal wake control scheme for suppressing fatigue load and increasing power extraction in wind farms," Renewable Energy, Elsevier, vol. 232(C).
    2. Mittal, Prateek & Christopoulos, Giorgos & Subramanian, Sriram, 2024. "Energy enhancement through noise minimization using acoustic metamaterials in a wind farm," Renewable Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    2. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    3. Michael F. Howland & John O. Dabiri, 2019. "Wind Farm Modeling with Interpretable Physics-Informed Machine Learning," Energies, MDPI, vol. 12(14), pages 1-21, July.
    4. Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
    5. Abraham, Aliza & Hong, Jiarong, 2020. "Dynamic wake modulation induced by utility-scale wind turbine operation," Applied Energy, Elsevier, vol. 257(C).
    6. He, Ruiyang & Yang, Hongxing & Sun, Haiying & Gao, Xiaoxia, 2021. "A novel three-dimensional wake model based on anisotropic Gaussian distribution for wind turbine wakes," Applied Energy, Elsevier, vol. 296(C).
    7. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    8. Li, Siyi & Zhang, Mingrui & Piggott, Matthew D., 2023. "End-to-end wind turbine wake modelling with deep graph representation learning," Applied Energy, Elsevier, vol. 339(C).
    9. Cuevas-Figueroa, Gabriel & Stansby, Peter K. & Stallard, Timothy, 2022. "Accuracy of WRF for prediction of operational wind farm data and assessment of influence of upwind farms on power production," Energy, Elsevier, vol. 254(PB).
    10. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    11. Giani, Paolo & Tagle, Felipe & Genton, Marc G. & Castruccio, Stefano & Crippa, Paola, 2020. "Closing the gap between wind energy targets and implementation for emerging countries," Applied Energy, Elsevier, vol. 269(C).
    12. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    13. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    14. Ericson, Sean J. & Kaffine, Daniel T. & Maniloff, Peter, 2020. "Costs of increasing oil and gas setbacks are initially modest but rise sharply," Energy Policy, Elsevier, vol. 146(C).
    15. Cai, Wei & Hu, Yang & Fang, Fang & Yao, Lujin & Liu, Jizhen, 2023. "Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines," Applied Energy, Elsevier, vol. 339(C).
    16. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    17. Lehmann, Paul & Tafarte, Philip, 2024. "Exclusion zones for renewable energy deployment: One man’s blessing, another man’s curse," Resource and Energy Economics, Elsevier, vol. 76(C).
    18. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    19. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    20. Robert Wade & Geraint Ellis, 2022. "Reclaiming the Windy Commons: Landownership, Wind Rights, and the Assetization of Renewable Resources," Energies, MDPI, vol. 15(10), pages 1-31, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.