IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v286y2021ics030626192100101x.html
   My bibliography  Save this article

Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis

Author

Listed:
  • Franco, Brais Armiño
  • Baptista, Patrícia
  • Neto, Rui Costa
  • Ganilha, Sofia

Abstract

Coupling offshore wind with hydrogen production can leverage the growth of both technologies due to synergies related to high capacity factors and the possibility of taking wind farms to areas where it would be impossible if these had to be connected to land. This work studies the competitiveness of different pathways of exporting hydrogen from offshore production plants, with special focus on the offloading to export hydrogen (pure hydrogen or hydrogen carriers) to land. This analysis relies on a techno-economic assessment of these pathways, including the determination of their levelized cost of hydrogen, the net present value and their energy expenditure. Among the studied pathways, the use of pipelines to transport hydrogen presents as the best solution, providing a levelized cost of hydrogen of 5.35€/kgH2 for the baseline case, with the potential of being as low as 2.17€/kgH2 if the EU support to hydrogen deployment achieves its targets. The energy requirement for this pathway is 0.46 MWh/MWhH2 (of lower heating value), being one of the less energy intensive methods. Another key insight of this work is that the commercialization of produced oxygen improves greatly the viability of the project, increasing the net present value by more than 150 M€ without major added complexities in the infrastructure. Also, a sensitivity analysis is performed to different variables (electrolyzer cost, capacity factor, electrolyzer system efficiency, plant distance to shore and the levelized cost of electricity) showing that the levelized cost of hydrogen is very dependent on the electricity and electrolyzer costs.

Suggested Citation

  • Franco, Brais Armiño & Baptista, Patrícia & Neto, Rui Costa & Ganilha, Sofia, 2021. "Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis," Applied Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:appene:v:286:y:2021:i:c:s030626192100101x
    DOI: 10.1016/j.apenergy.2021.116553
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic comparison of green ammonia production processes," Applied Energy, Elsevier, vol. 259(C).
    2. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    3. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).
    4. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    5. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2019. "Is a 100% renewable European power system feasible by 2050?," Applied Energy, Elsevier, vol. 233, pages 1027-1050.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Yi & You, Shi & Bindner, Henrik W. & Münster, Marie, 2022. "Optimal day-ahead dispatch of an alkaline electrolyser system concerning thermal–electric properties and state-transitional dynamics," Applied Energy, Elsevier, vol. 307(C).
    2. Gea-Bermúdez, Juan & Bramstoft, Rasmus & Koivisto, Matti & Kitzing, Lena & Ramos, Andrés, 2023. "Going offshore or not: Where to generate hydrogen in future integrated energy systems?," Energy Policy, Elsevier, vol. 174(C).
    3. Lucas, Tiago R. & Ferreira, Ana F. & Santos Pereira, R.B. & Alves, Marco, 2022. "Hydrogen production from the WindFloat Atlantic offshore wind farm: A techno-economic analysis," Applied Energy, Elsevier, vol. 310(C).
    4. Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
    5. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    6. Hailun Xie & Lars Johanning, 2023. "A Hierarchical Met-Ocean Data Selection Model for Fast O&M Simulation in Offshore Renewable Energy Systems," Energies, MDPI, vol. 16(3), pages 1-20, February.
    7. Wiegner, J.F. & Andreasson, L.M. & Kusters, J.E.H. & Nienhuis, R.M., 2024. "Interdisciplinary perspectives on offshore energy system integration in the North Sea: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Golrokh Sani, Ahmad & Najafi, Hamidreza & Azimi, Seyedeh Shakiba, 2022. "Dynamic thermal modeling of the refrigerated liquified CO2 tanker in carbon capture, utilization, and storage chain: A truck transport case study," Applied Energy, Elsevier, vol. 326(C).
    10. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi & Bischi, Aldo & Desideri, Umberto, 2023. "Techno-economic analysis of a novel solar-driven PEMEC-SOFC-based multi-generation system coupled parabolic trough photovoltaic thermal collector and thermal energy storage," Applied Energy, Elsevier, vol. 331(C).
    11. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Youngkyun Seo & Jiyoung An & Eunyoung Park & Jintae Kim & Meangik Cho & Seongjong Han & Jinkwang Lee, 2024. "Technical–Economic Analysis for Ammonia Ocean Transportation Using an Ammonia-Fueled Carrier," Sustainability, MDPI, vol. 16(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    2. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Gawlick, Julia & Hamacher, Thomas, 2023. "Impact of coupling the electricity and hydrogen sector in a zero-emission European energy system in 2050," Energy Policy, Elsevier, vol. 180(C).
    4. Baldi, Francesco & Coraddu, Andrea & Kalikatzarakis, Miltiadis & Jeleňová, Diana & Collu, Maurizio & Race, Julia & Maréchal, François, 2022. "Optimisation-based system designs for deep offshore wind farms including power to gas technologies," Applied Energy, Elsevier, vol. 310(C).
    5. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    6. Christoph Sejkora & Johannes Lindorfer & Lisa Kühberger & Thomas Kienberger, 2021. "Interlinking the Renewable Electricity and Gas Sectors: A Techno-Economic Case Study for Austria," Energies, MDPI, vol. 14(19), pages 1-38, October.
    7. Melliger, Marc, 2023. "Quantifying technology skewness in European multi-technology auctions and the effect of design elements and other driving factors," Energy Policy, Elsevier, vol. 175(C).
    8. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    9. Gharibpour, Hassan & Aminifar, Farrokh & Rahmati, Iman & Keshavarz, Arezou, 2021. "Dual variable decomposition to discriminate the cost imposed by inflexible units in electricity markets," Applied Energy, Elsevier, vol. 287(C).
    10. Zhong, Like & Yao, Erren & Zou, Hansen & Xi, Guang, 2022. "Thermodynamic and economic analysis of a directly solar-driven power-to-methane system by detailed distributed parameter method," Applied Energy, Elsevier, vol. 312(C).
    11. Kimon Keramidas & Silvana Mima & Adrien Bidaud, 2024. "Opportunities and roadblocks in the decarbonisation of the global steel sector: A demand and production modelling approach," Post-Print hal-04383385, HAL.
    12. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    13. Kang, Jidong & Wu, Zhuochun & Ng, Tsan Sheng & Su, Bin, 2023. "A stochastic-robust optimization model for inter-regional power system planning," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1234-1248.
    14. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    15. Zhang, Hanfei & Wang, Ligang & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic evaluation of biomass-to-fuels with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 270(C).
    16. Jåstad, Eirik Ogner & Bolkesjø, Torjus Folsland, 2023. "Modelling emission and land-use impacts of altered bioenergy use in the future energy system," Energy, Elsevier, vol. 265(C).
    17. Luo, Shihua & Hu, Weihao & Liu, Wen & Zhang, Zhenyuan & Bai, Chunguang & Huang, Qi & Chen, Zhe, 2022. "Study on the decarbonization in China's power sector under the background of carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    18. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    19. López Prol, Javier & Zilberman, David, 2023. "No alarms and no surprises: Dynamics of renewable energy curtailment in California," Energy Economics, Elsevier, vol. 126(C).
    20. Le Treut, Gaëlle & Lefèvre, Julien & Lallana, Francisco & Bravo, Gonzalo, 2021. "The multi-level economic impacts of deep decarbonization strategies for the energy system," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:286:y:2021:i:c:s030626192100101x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.