IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921010965.html
   My bibliography  Save this article

Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework

Author

Listed:
  • Wang, Wanrong
  • Ma, Yingjie
  • Maroufmashat, Azadeh
  • Zhang, Nan
  • Li, Jie
  • Xiao, Xin

Abstract

Hydrogen is an important energy carrier in the transportation sector and an essential industrial feedstock for petroleum refineries, methanol, and ammonia production. Renewable energy sources, especially solar energy have been investigated for large-scale hydrogen production in thermochemical, electrochemical, or photochemical manners due to considerable greenhouse gas emissions from the conventional steam reforming of natural gas and oil-based feedstock. The solar steam methane reforming using molten salt (SSMR-MS) is superior due to its unlimited operation hours and lower total annualized cost (TAC). In this work, we extend the existing optimisation framework for optimal design of SSMR-MS in which machine learning techniques are employed to describe the relationship between solar-related cost and molten salt heat duty and establish relationships of TAC, hydrogen production rate and molten salt heat duty with independent input variables in the whole flowsheet based on 18,619 sample points generated using the Latin hypercube sampling technique. A hybrid global optimisation algorithm is adopted to optimise the developed model and generate the optimal design, which is validated in SAM and Aspen Plus V8.8. The computational results demonstrate that a significant reduction in TAC by 14.9 % ~ 15.1 %, and CO2 emissions by 4.4 % ~ 5.2 % can be achieved compared to the existing SSMR-MS. The lowest Levelized cost of Hydrogen Production is 2.4 $ kg−1 which is reduced by around 17.2 % compared to the existing process with levelized cost of 2.9 $ kg−1.

Suggested Citation

  • Wang, Wanrong & Ma, Yingjie & Maroufmashat, Azadeh & Zhang, Nan & Li, Jie & Xiao, Xin, 2022. "Optimal design of large-scale solar-aided hydrogen production process via machine learning based optimisation framework," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010965
    DOI: 10.1016/j.apenergy.2021.117751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010965
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & von Storch, Henrik & Roeb, Martin & Sattler, Christian, 2014. "Solar thermal reforming of methane feedstocks for hydrogen and syngas production—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 656-682.
    2. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    3. Abanades, Stéphane & Charvin, Patrice & Flamant, Gilles & Neveu, Pierre, 2006. "Screening of water-splitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy," Energy, Elsevier, vol. 31(14), pages 2805-2822.
    4. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    5. Koumi Ngoh, Simon & Njomo, Donatien, 2012. "An overview of hydrogen gas production from solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6782-6792.
    6. Christopher L. Muhich & Brian D. Ehrhart & Ibraheam Al-Shankiti & Barbara J. Ward & Charles B. Musgrave & Alan W. Weimer, 2016. "A review and perspective of efficient hydrogen generation via solar thermal water splitting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(3), pages 261-287, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Guishi & Luo, Ercheng & Zhao, Ying & Yang, Yihao & Chen, Binbin & Cai, Youcheng & Wang, Xiaoqiang & Dong, Changqing, 2023. "Analysis and prediction of green hydrogen production potential by photovoltaic-powered water electrolysis using machine learning in China," Energy, Elsevier, vol. 284(C).
    2. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Gong, Linjuan & Huang, Congzhi & Zhang, Jianhua, 2023. "Application of multi-agent EADRC in flexible operation of combined heat and power plant considering carbon emission and economy," Energy, Elsevier, vol. 263(PB).
    3. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    4. Qi, Meng & Kim, Minsu & Dat Vo, Nguyen & Yin, Liang & Liu, Yi & Park, Jinwoo & Moon, Il, 2022. "Proposal and surrogate-based cost-optimal design of an innovative green ammonia and electricity co-production system via liquid air energy storage," Applied Energy, Elsevier, vol. 314(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    2. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    3. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    5. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    6. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    7. Orhan, Mehmet F. & Babu, Binish S., 2015. "Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system," Energy, Elsevier, vol. 88(C), pages 801-820.
    8. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    9. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    10. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    11. Zhu, Xuancan & Shi, Yixiang & Li, Shuang & Cai, Ningsheng, 2018. "Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production," Applied Energy, Elsevier, vol. 229(C), pages 1061-1071.
    12. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    14. Zhou, Dengji & Yan, Siyun & Huang, Dawen & Shao, Tiemin & Xiao, Wang & Hao, Jiarui & Wang, Chen & Yu, Tianqi, 2022. "Modeling and simulation of the hydrogen blended gas-electricity integrated energy system and influence analysis of hydrogen blending modes," Energy, Elsevier, vol. 239(PA).
    15. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    16. Alves, Luís & Pereira, Vítor & Lagarteira, Tiago & Mendes, Adélio, 2021. "Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    18. Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
    19. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    20. Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.