IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5445-d1196400.html
   My bibliography  Save this article

Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East

Author

Listed:
  • Marek Jaszczur

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Qusay Hassan

    (Department of Mechanical Engineering, University of Diyala, Baqubah 32001, Iraq)

  • Aws Zuhair Sameen

    (College of Medical Techniques, Al-Farahidi University, Baghdad 10071, Iraq)

  • Hayder M. Salman

    (Department of Computer Science, Al-Turath University College, Baghdad 27134, Iraq)

  • Olushola Tomilayo Olapade

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

  • Szymon Wieteska

    (Faculty of Energy and Fuels, AGH University of Science and Technology, 30-059 Krakow, Poland)

Abstract

This comparative study examines the potential for green hydrogen production in Europe and the Middle East, leveraging 3MWp solar and wind power plants. Experimental weather data from 2022 inform the selection of two representative cities, namely Krakow, Poland (Europe), and Diyala, Iraq (Middle East). These cities are chosen as industrial–residential zones, representing the respective regions’ characteristics. The research optimizes an alkaline water electrolyzer capacity in juxtaposition with the aforementioned power plants to maximize the green hydrogen output. Economic and environmental factors integral to green hydrogen production are assessed to identify the region offering the most advantageous conditions. The analysis reveals that the Middle East holds superior potential for green hydrogen production compared to Europe, attributed to a higher prevalence of solar and wind resources, coupled with reduced land and labor costs. Hydrogen production costs in Europe are found to range between USD 9.88 and USD 14.31 per kilogram, in contrast to the Middle East, where costs span from USD 6.54 to USD 12.66 per kilogram. Consequently, the Middle East emerges as a more feasible region for green hydrogen production, with the potential to curtail emissions, enhance air quality, and bolster energy security. The research findings highlight the advantages of the Middle East industrial–residential zone ‘Diyala’ and Europe industrial–residential zone ‘Krakow’ in terms of their potential for green hydrogen production.

Suggested Citation

  • Marek Jaszczur & Qusay Hassan & Aws Zuhair Sameen & Hayder M. Salman & Olushola Tomilayo Olapade & Szymon Wieteska, 2023. "Massive Green Hydrogen Production Using Solar and Wind Energy: Comparison between Europe and the Middle East," Energies, MDPI, vol. 16(14), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5445-:d:1196400
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5445/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5445/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leirpoll, Malene Eldegard & Næss, Jan Sandstad & Cavalett, Otavio & Dorber, Martin & Hu, Xiangping & Cherubini, Francesco, 2021. "Optimal combination of bioenergy and solar photovoltaic for renewable energy production on abandoned cropland," Renewable Energy, Elsevier, vol. 168(C), pages 45-56.
    2. Navas-Anguita, Zaira & García-Gusano, Diego & Dufour, Javier & Iribarren, Diego, 2020. "Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport," Applied Energy, Elsevier, vol. 259(C).
    3. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    4. Fúnez Guerra, C. & Reyes-Bozo, L. & Vyhmeister, E. & Jaén Caparrós, M. & Salazar, José Luis & Clemente-Jul, C., 2020. "Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan," Renewable Energy, Elsevier, vol. 157(C), pages 404-414.
    5. Sadeghi, Shayan & Ghandehariun, Samane & Rosen, Marc A., 2020. "Comparative economic and life cycle assessment of solar-based hydrogen production for oil and gas industries," Energy, Elsevier, vol. 208(C).
    6. Qusay Hassan & Imad Saeed Abdulrahman & Hayder M. Salman & Olushola Tomilayo Olapade & Marek Jaszczur, 2023. "Techno-Economic Assessment of Green Hydrogen Production by an Off-Grid Photovoltaic Energy System," Energies, MDPI, vol. 16(2), pages 1-20, January.
    7. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    8. Franco, Brais Armiño & Baptista, Patrícia & Neto, Rui Costa & Ganilha, Sofia, 2021. "Assessment of offloading pathways for wind-powered offshore hydrogen production: Energy and economic analysis," Applied Energy, Elsevier, vol. 286(C).
    9. Mazzeo, Domenico & Herdem, Münür Sacit & Matera, Nicoletta & Wen, John Z., 2022. "Green hydrogen production: Analysis for different single or combined large-scale photovoltaic and wind renewable systems," Renewable Energy, Elsevier, vol. 200(C), pages 360-378.
    10. Alexandra Kopteva & Leonid Kalimullin & Pavel Tcvetkov & Amilcar Soares, 2021. "Prospects and Obstacles for Green Hydrogen Production in Russia," Energies, MDPI, vol. 14(3), pages 1-21, January.
    11. Ceran, Bartosz & Mielcarek, Agata & Hassan, Qusay & Teneta, Janusz & Jaszczur, Marek, 2021. "Aging effects on modelling and operation of a photovoltaic system with hydrogen storage," Applied Energy, Elsevier, vol. 297(C).
    12. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    13. André Wolf & Nils Zander, 2021. "Green Hydrogen in Europe: Do Strategies Meet Expectations?," Intereconomics: Review of European Economic Policy, Springer;ZBW - Leibniz Information Centre for Economics;Centre for European Policy Studies (CEPS), vol. 56(6), pages 316-323, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hojun Song & Yunji Kim & Heena Yang, 2023. "Design and Optimization of an Alkaline Electrolysis System for Small-Scale Hydropower Integration," Energies, MDPI, vol. 17(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
    2. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    3. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    4. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    5. Superchi, Francesco & Papi, Francesco & Mannelli, Andrea & Balduzzi, Francesco & Ferro, Francesco Maria & Bianchini, Alessandro, 2023. "Development of a reliable simulation framework for techno-economic analyses on green hydrogen production from wind farms using alkaline electrolyzers," Renewable Energy, Elsevier, vol. 207(C), pages 731-742.
    6. Armenia Androniceanu & Oana Matilda Sabie, 2022. "Overview of Green Energy as a Real Strategic Option for Sustainable Development," Energies, MDPI, vol. 15(22), pages 1-35, November.
    7. Svetlana Revinova & Inna Lazanyuk & Svetlana Ratner & Konstantin Gomonov, 2023. "Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves," Energies, MDPI, vol. 16(11), pages 1-19, May.
    8. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    9. Khatiwada, Dilip & Vasudevan, Rohan Adithya & Santos, Bruno Henrique, 2022. "Decarbonization of natural gas systems in the EU – Costs, barriers, and constraints of hydrogen production with a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Sheng, Mingyue Selena & Sreenivasan, Ajith Viswanath & Sharp, Basil & Du, Bo, 2021. "Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania," Energy Policy, Elsevier, vol. 158(C).
    11. Mohammadi, Amir & Babaei, Reza & Jianu, Ofelia A., 2023. "Feasibility analysis of sustainable hydrogen production for heavy-duty applications: Case study of highway 401," Energy, Elsevier, vol. 282(C).
    12. Chi, Yuanying & Xu, Weiyue & Xiao, Meng & Wang, Zhengzao & Zhang, Xufeng & Chen, Yahui, 2023. "Fuel-cycle based environmental and economic assessment of hydrogen fuel cell vehicles in China," Energy, Elsevier, vol. 282(C).
    13. Sousa, Jorge & Lagarto, João & Fonseca, Miguel, 2024. "The role of storage and flexibility in the energy transition: Substitution effect of resources with application to the Portuguese electricity system," Renewable Energy, Elsevier, vol. 228(C).
    14. Qusay Hassan & Sameer Algburi & Aws Zuhair Sameen & Marek Jaszczur & Hayder M. Salman, 2024. "Hydrogen as an energy carrier: properties, storage methods, challenges, and future implications," Environment Systems and Decisions, Springer, vol. 44(2), pages 327-350, June.
    15. Tawalbeh, Muhammad & Murtaza, Sana Z.M. & Al-Othman, Amani & Alami, Abdul Hai & Singh, Karnail & Olabi, Abdul Ghani, 2022. "Ammonia: A versatile candidate for the use in energy storage systems," Renewable Energy, Elsevier, vol. 194(C), pages 955-977.
    16. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Mohideen, Mohamedazeem M. & Subramanian, Balachandran & Sun, Jingyi & Ge, Jing & Guo, Han & Radhamani, Adiyodi Veettil & Ramakrishna, Seeram & Liu, Yong, 2023. "Techno-economic analysis of different shades of renewable and non-renewable energy-based hydrogen for fuel cell electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    18. Calado, Goncalo & Castro, Rui & Pires, A.J. & Marques, Miguel J., 2024. "Assessment of hydrogen-based solutions associated to offshore wind farms: The case of the Iberian Peninsula," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    19. Zheng, Yi & You, Shi & Huang, Chunjun & Jin, Xin, 2023. "Model-based economic analysis of off-grid wind/hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Deger Saygin & Herib Blanco & Francisco Boshell & Joseph Cordonnier & Kevin Rouwenhorst & Priyank Lathwal & Dolf Gielen, 2023. "Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand," Sustainability, MDPI, vol. 15(2), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5445-:d:1196400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.