IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v304y2024ics0360544224018358.html
   My bibliography  Save this article

Study on charge and discharge control strategy of improved PSO for EV

Author

Listed:
  • Yin, Wanjun
  • Liang, Wenbin
  • Ji, Jianbo

Abstract

In view of the negative influence of electric vehicle (EV) random charging on power grid load stability and charging cost of users, on the premise of guaranteeing users' travel demand, in this paper, an improved PSO model is proposed with the objective function of optimizing the daily load variance of the power grid and minimizing the charge cost of the vehicle owner. In this model, chaotic mapping is used to initialize the position of particles so that the particles are uniformly distributed in space and the diversity of particle solutions is increased, based on the global search ability and local search ability of the improved algorithm, combined with the analysis of a numerical example, the results show that the improved multi-objective PSO algorithm converges quickly and can jump out of the local optimum, better multi-objective optimization to reduce the peak-valley load difference and charging costs.

Suggested Citation

  • Yin, Wanjun & Liang, Wenbin & Ji, Jianbo, 2024. "Study on charge and discharge control strategy of improved PSO for EV," Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018358
    DOI: 10.1016/j.energy.2024.132061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224018358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    2. Ma, Yan & Hu, Fuyuan & Hu, Yunfeng, 2023. "Energy efficiency improvement of intelligent fuel cell/battery hybrid vehicles through an integrated management strategy," Energy, Elsevier, vol. 263(PE).
    3. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    4. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).
    5. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    2. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    3. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    4. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    5. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    6. Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
    7. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    8. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    9. Krzysztof Zagrajek & Mariusz Kłos & Desire D. Rasolomampionona & Mirosław Lewandowski & Karol Pawlak, 2023. "The Novel Approach of Using Electric Vehicles as a Resource to Mitigate the Negative Effects of Power Rationing on Non-Residential Buildings," Energies, MDPI, vol. 17(1), pages 1-36, December.
    10. Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
    11. Li, Xinyu & Cao, Yue & Yan, Fei & Li, Yuzhe & Zhao, Wanlin & Wang, Yue, 2022. "Towards user-friendly energy supplement service considering battery degradation cost," Energy, Elsevier, vol. 249(C).
    12. Gharibi, Mohamad Amin & Nafisi, Hamed & Askarian-abyaneh, Hossein & Hajizadeh, Amin, 2023. "Deep learning framework for day-ahead optimal charging scheduling of electric vehicles in parking lot," Applied Energy, Elsevier, vol. 349(C).
    13. Ahmed Foda & Moataz Mohamed & Hany Farag & Ehab El-Saadany, 2023. "A resilient battery electric bus transit system configuration," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Yubo Wang & Weiqing Sun, 2024. "A Two-Stage Robust Pricing Strategy for Electric Vehicle Aggregators Considering Dual Uncertainty in Electricity Demand and Real-Time Electricity Prices," Sustainability, MDPI, vol. 16(9), pages 1-19, April.
    15. Lai, Chun Sing & Chen, Dashen & Zhang, Jinning & Zhang, Xin & Xu, Xu & Taylor, Gareth A. & Lai, Loi Lei, 2022. "Profit maximization for large-scale energy storage systems to enable fast EV charging infrastructure in distribution networks," Energy, Elsevier, vol. 259(C).
    16. Aree Wangsupphaphol & Surachai Chaitusaney, 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    17. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    18. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Liu, Shiguang, 2024. "Analysis and control strategy design for PEMFC purging process," Energy, Elsevier, vol. 290(C).
    19. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    20. Wang, Yubin & Yang, Qiang & Zhou, Yue & Zheng, Yanchong, 2024. "A risk-averse day-ahead bidding strategy of transactive energy sharing microgrids with data-driven chance constraints," Applied Energy, Elsevier, vol. 353(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:304:y:2024:i:c:s0360544224018358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.