A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.129097
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
- Melendez, Kevin A. & Subramanian, Vignesh & Das, Tapas K. & Kwon, Changhyun, 2019. "Empowering end-use consumers of electricity to aggregate for demand-side participation," Applied Energy, Elsevier, vol. 248(C), pages 372-382.
- Zareipour, Hamidreza & Bhattacharya, Kankar & Canizares, Claudio A., 2007. "Electricity market price volatility: The case of Ontario," Energy Policy, Elsevier, vol. 35(9), pages 4739-4748, September.
- Subramanian, Vignesh & Das, Tapas K., 2019. "A two-layer model for dynamic pricing of electricity and optimal charging of electric vehicles under price spikes," Energy, Elsevier, vol. 167(C), pages 1266-1277.
- Rehman, Waqas ur & Bo, Rui & Mehdipourpicha, Hossein & Kimball, Jonathan W., 2022. "Sizing battery energy storage and PV system in an extreme fast charging station considering uncertainties and battery degradation," Applied Energy, Elsevier, vol. 313(C).
- Melendez, Kevin A. & Das, Tapas K. & Kwon, Changhyun, 2020. "Optimal operation of a system of charging hubs and a fleet of shared autonomous electric vehicles," Applied Energy, Elsevier, vol. 279(C).
- Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
- Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
- Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
- Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
- Lee, Sangyoon & Choi, Dae-Hyun, 2021. "Dynamic pricing and energy management for profit maximization in multiple smart electric vehicle charging stations: A privacy-preserving deep reinforcement learning approach," Applied Energy, Elsevier, vol. 304(C).
- Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
- Lai, Chun Sing & Chen, Dashen & Zhang, Jinning & Zhang, Xin & Xu, Xu & Taylor, Gareth A. & Lai, Loi Lei, 2022. "Profit maximization for large-scale energy storage systems to enable fast EV charging infrastructure in distribution networks," Energy, Elsevier, vol. 259(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Zhonghao & Lee, Carman K.M. & Huo, Jiage, 2023. "EV charging station deployment on coupled transportation and power distribution networks via reinforcement learning," Energy, Elsevier, vol. 267(C).
- Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
- Zhao, Zhonghao & Lee, Carman K.M. & Ren, Jingzheng, 2024. "A two-level charging scheduling method for public electric vehicle charging stations considering heterogeneous demand and nonlinear charging profile," Applied Energy, Elsevier, vol. 355(C).
- Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
- Qiu, Dawei & Wang, Yi & Hua, Weiqi & Strbac, Goran, 2023. "Reinforcement learning for electric vehicle applications in power systems:A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
- Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
- Melendez, Kevin A. & Das, Tapas K. & Kwon, Changhyun, 2020. "Optimal operation of a system of charging hubs and a fleet of shared autonomous electric vehicles," Applied Energy, Elsevier, vol. 279(C).
- Anis ur Rehman & Muhammad Ali & Sheeraz Iqbal & Aqib Shafiq & Nasim Ullah & Sattam Al Otaibi, 2022. "Artificial Intelligence-Based Control and Coordination of Multiple PV Inverters for Reactive Power/Voltage Control of Power Distribution Networks," Energies, MDPI, vol. 15(17), pages 1-13, August.
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
- Zhang, Shulei & Jia, Runda & Pan, Hengxin & Cao, Yankai, 2023. "A safe reinforcement learning-based charging strategy for electric vehicles in residential microgrid," Applied Energy, Elsevier, vol. 348(C).
- Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
- Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
- Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
- Yin, Rumeng & He, Jiang, 2023. "Design of a photovoltaic electric bike battery-sharing system in public transit stations," Applied Energy, Elsevier, vol. 332(C).
- Samuel M. Muhindo & Roland P. Malhamé & Geza Joos, 2021. "A Novel Mean Field Game-Based Strategy for Charging Electric Vehicles in Solar Powered Parking Lots," Energies, MDPI, vol. 14(24), pages 1-21, December.
- Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
- Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
- Daniel Manfre Jaimes & Manuel Zamudio López & Hamidreza Zareipour & Mike Quashie, 2023. "A Hybrid Model for Multi-Day-Ahead Electricity Price Forecasting considering Price Spikes," Forecasting, MDPI, vol. 5(3), pages 1-23, July.
- Vinyals, Meritxell, 2021. "Scalable multi-agent local energy trading — Meeting regulatory compliance and validation in the Cardiff grid," Applied Energy, Elsevier, vol. 298(C).
More about this item
Keywords
EV charging hubs; Day-ahead commitment; Battery storage system; Deep reinforcement learning; Fast charging; Power management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s036054422302491x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.