Joint chance-constrained program based electric vehicles optimal dispatching strategy considering drivers' response uncertainty
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.122313
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, Qian & Wu, Xiaohan & Deng, Xiaosong & Huang, Yaoyu & Li, Chunyan & Wu, Jiaqi, 2023. "Bidding strategy for wind power and Large-scale electric vehicles participating in Day-ahead energy and frequency regulation market," Applied Energy, Elsevier, vol. 341(C).
- Ensslen, Axel & Ringler, Philipp & Dörr, Lasse & Jochem, Patrick & Zimmermann, Florian & Fichtner, Wolf, 2018. "Incentivizing smart charging: Modeling charging tariffs for electric vehicles in German and French electricity markets," MPRA Paper 91543, University Library of Munich, Germany, revised 17 Feb 2018.
- Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
- Park, Sung-Won & Cho, Kyu-Sang & Hoefter, Gregor & Son, Sung-Yong, 2022. "Electric vehicle charging management using location-based incentives for reducing renewable energy curtailment considering the distribution system," Applied Energy, Elsevier, vol. 305(C).
- L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
- Dai, Ziyi & Liu, Haobing & Rodgers, Michael O. & Guensler, Randall, 2022. "Electric vehicle market potential and associated energy and emissions reduction benefits," Applied Energy, Elsevier, vol. 322(C).
- de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
- Wu, Chuantao & Chen, Cen & Ma, Yuncong & Li, Feiyu & Sui, Quan & Lin, Xiangning & Wei, Fanrong & Li, Zhengtian, 2022. "Enhancing resilient restoration of distribution systems utilizing electric vehicles and supporting incentive mechanism," Applied Energy, Elsevier, vol. 322(C).
- Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2015. "Value of flexible electric vehicles in providing spinning reserve services," Applied Energy, Elsevier, vol. 157(C), pages 60-74.
- Visser, L.R. & Kootte, M.E. & Ferreira, A.C. & Sicurani, O. & Pauwels, E.J. & Vuik, C. & Van Sark, W.G.J.H.M. & AlSkaif, T.A., 2022. "An operational bidding framework for aggregated electric vehicles on the electricity spot market," Applied Energy, Elsevier, vol. 308(C).
- L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
- Heinisch, Verena & Göransson, Lisa & Erlandsson, Rasmus & Hodel, Henrik & Johnsson, Filip & Odenberger, Mikael, 2021. "Smart electric vehicle charging strategies for sectoral coupling in a city energy system," Applied Energy, Elsevier, vol. 288(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zanvettor, Giovanni Gino & Fochesato, Marta & Casini, Marco & Lygeros, John & Vicino, Antonio, 2024. "A stochastic approach for EV charging stations in demand response programs," Applied Energy, Elsevier, vol. 373(C).
- Liu, Ke & Liu, Yanli, 2024. "Incentive-willingness-decision framework: Unit discharge triangle-based maximum stable V2G capability evaluation," Applied Energy, Elsevier, vol. 374(C).
- Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Kaizhe & Xu, Yinliang & Sun, Hongbin, 2024. "Bilevel optimal coordination of active distribution network and charging stations considering EV drivers' willingness," Applied Energy, Elsevier, vol. 360(C).
- Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
- Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
- Xiangchu Xu & Zewei Zhan & Zengqiang Mi & Ling Ji, 2023. "An Optimized Decision Model for Electric Vehicle Aggregator Participation in the Electricity Market Based on the Stackelberg Game," Sustainability, MDPI, vol. 15(20), pages 1-26, October.
- Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
- L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
- Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
- Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
- Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
- Borgonovo, Emanuele & Plischke, Elmar & Rabitti, Giovanni, 2024. "The many Shapley values for explainable artificial intelligence: A sensitivity analysis perspective," European Journal of Operational Research, Elsevier, vol. 318(3), pages 911-926.
- Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
- Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
- Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
- Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
- Diaz, Cesar & Ruiz, Fredy & Patino, Diego, 2017. "Modeling and control of water booster pressure systems as flexible loads for demand response," Applied Energy, Elsevier, vol. 204(C), pages 106-116.
- Motalleb, Mahdi & Thornton, Matsu & Reihani, Ehsan & Ghorbani, Reza, 2016. "A nascent market for contingency reserve services using demand response," Applied Energy, Elsevier, vol. 179(C), pages 985-995.
- Cleary, Kathryne & Palmer, Karen, 2020. "Encouraging Electrification through Energy Service Subscriptions," RFF Working Paper Series 20-09, Resources for the Future.
- da Costa, B. Freitas Paulo & Pesenti, Silvana M. & Targino, Rodrigo S., 2023.
"Risk budgeting portfolios from simulations,"
European Journal of Operational Research, Elsevier, vol. 311(3), pages 1040-1056.
- Bernardo Freitas Paulo da Costa & Silvana M. Pesenti & Rodrigo S. Targino, 2023. "Risk Budgeting Portfolios from Simulations," Papers 2302.01196, arXiv.org.
- Juan Ma & Foad Mahdavi Pajouh & Balabhaskar Balasundaram & Vladimir Boginski, 2016. "The Minimum Spanning k -Core Problem with Bounded CVaR Under Probabilistic Edge Failures," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 295-307, May.
- Borgonovo, Emanuele & Gatti, Stefano, 2013. "Risk analysis with contractual default. Does covenant breach matter?," European Journal of Operational Research, Elsevier, vol. 230(2), pages 431-443.
More about this item
Keywords
Electric vehicle; Joint chance-constrained program; Incentive price; Driver response uncertainty; Sequential convex approximation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:356:y:2024:i:c:s030626192301677x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.