IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v255y2022ics0360544222014402.html
   My bibliography  Save this article

Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load

Author

Listed:
  • Müller, Mathias
  • Blume, Yannic
  • Reinhard, Janis

Abstract

The bidirectional charging of electric vehicles (EVs) can foster the energy transition. The growing number of EVs permit different options for integrating them into electricity grids. Therefore, an energy system model to simulate of low voltage grids is expanded with an optimisation algorithm. More than 1000 real low voltage grids were combined with future scenarios regarding photovoltaic plants (PV), electric heating and mobility to evaluate the grid load. Due to these new loads, 42% of the grids need to be expanded by 2040. Optimisation at a building level is not compulsorily grid-supportive so that neither PV self-consumption optimisation nor peak shaving at commercial units can significantly decrease the number of affected grids. In both cases, bidirectional charging capability is only slightly beneficial for the grid. Applying variable market prices to the flexibility options without considering the local grid situation leads to very high simultaneous charging powers of 10 kW/EV, even for many EVs. In contrast, simultaneity decreases to 3 kW/EV from 30 EVs without variable prices. The higher simultaneities also lead to higher grid loads, and therefore, the percentage of grids needing expansion measure rises to 71%, primarily due to too high transformer utilisation and violations of the voltage conditions.

Suggested Citation

  • Müller, Mathias & Blume, Yannic & Reinhard, Janis, 2022. "Impact of behind-the-meter optimised bidirectional electric vehicles on the distribution grid load," Energy, Elsevier, vol. 255(C).
  • Handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014402
    DOI: 10.1016/j.energy.2022.124537
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222014402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramos Muñoz, Edgar & Razeghi, Ghazal & Zhang, Li & Jabbari, Faryar, 2016. "Electric vehicle charging algorithms for coordination of the grid and distribution transformer levels," Energy, Elsevier, vol. 113(C), pages 930-942.
    2. Timo Kern & Patrick Dossow & Serafin von Roon, 2020. "Integrating Bidirectionally Chargeable Electric Vehicles into the Electricity Markets," Energies, MDPI, vol. 13(21), pages 1-30, November.
    3. Ruhnau, Oliver & Bannik, Sergej & Otten, Sydney & Praktiknjo, Aaron & Robinius, Martin, 2019. "Direct or indirect electrification? A review of heat generation and road transport decarbonisation scenarios for Germany 2050," Energy, Elsevier, vol. 166(C), pages 989-999.
    4. Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
    5. Felix Böing & Anika Regett, 2019. "Hourly CO 2 Emission Factors and Marginal Costs of Energy Carriers in Future Multi-Energy Systems," Energies, MDPI, vol. 12(12), pages 1-32, June.
    6. Yin, WanJun & Ming, ZhengFeng & Wen, Tao, 2021. "Scheduling strategy of electric vehicle charging considering different requirements of grid and users," Energy, Elsevier, vol. 232(C).
    7. Martin Robinius & Alexander Otto & Philipp Heuser & Lara Welder & Konstantinos Syranidis & David S. Ryberg & Thomas Grube & Peter Markewitz & Ralf Peters & Detlef Stolten, 2017. "Linking the Power and Transport Sectors—Part 1: The Principle of Sector Coupling," Energies, MDPI, vol. 10(7), pages 1-22, July.
    8. Wang, Lu & Sharkh, Suleiman & Chipperfield, Andy, 2016. "Optimal coordination of vehicle-to-grid batteries and renewable generators in a distribution system," Energy, Elsevier, vol. 113(C), pages 1250-1264.
    9. Englberger, Stefan & Abo Gamra, Kareem & Tepe, Benedikt & Schreiber, Michael & Jossen, Andreas & Hesse, Holger, 2021. "Electric vehicle multi-use: Optimizing multiple value streams using mobile storage systems in a vehicle-to-grid context," Applied Energy, Elsevier, vol. 304(C).
    10. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
    11. Xiang, Yue & Jiang, Zhuozhen & Gu, Chenghong & Teng, Fei & Wei, Xiangyu & Wang, Yang, 2019. "Electric vehicle charging in smart grid: A spatial-temporal simulation method," Energy, Elsevier, vol. 189(C).
    12. Jochen Conrad & Simon Greif, 2019. "Modelling Load Profiles of Heat Pumps," Energies, MDPI, vol. 12(4), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    2. Irvylle Cavalcante & Jamilson Júnior & Jônatas Augusto Manzolli & Luiz Almeida & Mauro Pungo & Cindy Paola Guzman & Hugo Morais, 2023. "Electric Vehicles Charging Using Photovoltaic Energy Surplus: A Framework Based on Blockchain," Energies, MDPI, vol. 16(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signer, Tim & Baumgartner, Nora & Ruppert, Manuel & Sandmeier, Thorben & Fichtner, Wolf, 2024. "Modeling V2G spot market trading: The impact of charging tariffs on economic viability," Energy Policy, Elsevier, vol. 189(C).
    2. Wohlschlager, Daniela & Kigle, Stephan & Schindler, Vanessa & Neitz-Regett, Anika & Fröhling, Magnus, 2024. "Environmental effects of vehicle-to-grid charging in future energy systems – A prospective life cycle assessment," Applied Energy, Elsevier, vol. 370(C).
    3. Tobias Hübner, 2020. "Small-Scale Modelling of Individual Greenhouse Gas Abatement Measures in Industry," Energies, MDPI, vol. 13(7), pages 1-43, April.
    4. Halilovic, Smajil & Odersky, Leonhard & Hamacher, Thomas, 2022. "Integration of groundwater heat pumps into energy system optimization models," Energy, Elsevier, vol. 238(PA).
    5. Kern, Timo & Dossow, Patrick & Morlock, Elena, 2022. "Revenue opportunities by integrating combined vehicle-to-home and vehicle-to-grid applications in smart homes," Applied Energy, Elsevier, vol. 307(C).
    6. Miguel Carrión & Rafael Zárate-Miñano & Ruth Domínguez, 2020. "Integration of Electric Vehicles in Low-Voltage Distribution Networks Considering Voltage Management," Energies, MDPI, vol. 13(16), pages 1-23, August.
    7. Ortiz-Imedio, Rafael & Caglayan, Dilara Gulcin & Ortiz, Alfredo & Heinrichs, Heidi & Robinius, Martin & Stolten, Detlef & Ortiz, Inmaculada, 2021. "Power-to-Ships: Future electricity and hydrogen demands for shipping on the Atlantic coast of Europe in 2050," Energy, Elsevier, vol. 228(C).
    8. Carrión, Miguel & Domínguez, Ruth & Cañas-Carretón, Miguel & Zárate-Miñano, Rafael, 2019. "Scheduling isolated power systems considering electric vehicles and primary frequency response," Energy, Elsevier, vol. 168(C), pages 1192-1207.
    9. Alexander J. Bogensperger & Yann Fabel & Joachim Ferstl, 2022. "Accelerating Energy-Economic Simulation Models via Machine Learning-Based Emulation and Time Series Aggregation," Energies, MDPI, vol. 15(3), pages 1-42, February.
    10. Johannes Röder & David Beier & Benedikt Meyer & Joris Nettelstroth & Torben Stührmann & Edwin Zondervan, 2020. "Design of Renewable and System-Beneficial District Heating Systems Using a Dynamic Emission Factor for Grid-Sourced Electricity," Energies, MDPI, vol. 13(3), pages 1-22, February.
    11. Kockel, Christina & Nolting, Lars & Priesmann, Jan & Praktiknjo, Aaron, 2022. "Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case," Applied Energy, Elsevier, vol. 308(C).
    12. Qiwei Xu & Jianshu Huang & Yue Han & Yun Yang & Lingyan Luo, 2020. "A Study on Electric Vehicles Participating in the Load Regulation of Urban Complexes," Energies, MDPI, vol. 13(11), pages 1-23, June.
    13. Wang, Yubo & Shi, Wenbo & Wang, Bin & Chu, Chi-Cheng & Gadh, Rajit, 2017. "Optimal operation of stationary and mobile batteries in distribution grids," Applied Energy, Elsevier, vol. 190(C), pages 1289-1301.
    14. Tepe, Benedikt & Figgener, Jan & Englberger, Stefan & Sauer, Dirk Uwe & Jossen, Andreas & Hesse, Holger, 2022. "Optimal pool composition of commercial electric vehicles in V2G fleet operation of various electricity markets," Applied Energy, Elsevier, vol. 308(C).
    15. Rüdisüli, Martin & Romano, Elliot & Eggimann, Sven & Patel, Martin K., 2022. "Decarbonization strategies for Switzerland considering embedded greenhouse gas emissions in electricity imports," Energy Policy, Elsevier, vol. 162(C).
    16. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    17. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    18. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    19. Lucio Ciabattoni & Stefano Cardarelli & Marialaura Di Somma & Giorgio Graditi & Gabriele Comodi, 2021. "A Novel Open-Source Simulator Of Electric Vehicles in a Demand-Side Management Scenario," Energies, MDPI, vol. 14(6), pages 1-16, March.
    20. Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:255:y:2022:i:c:s0360544222014402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.