IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics0360544224029724.html
   My bibliography  Save this article

Particle swarm optimization based on data driven for EV charging station siting

Author

Listed:
  • Yin, Linfei
  • Zhang, Yifan

Abstract

Charging stations are an important support facility for electric vehicles (EVs). Nowadays, the EV industry is developing rapidly, however, the imperfect construction of charging stations or the unreasonable choice of location has seriously reduced the desire of people to buy EVs and led to the problem of difficult charging of EVs in many areas. At present, the research field of EV charging station siting suffers from the inability to quickly and accurately calculate the optimal solution for charging station siting. In this regard, a particle swarm optimization based on deep neural networks modified boundaries (DNNMBPSO) is proposed for solving the problem. DNNMBPSO reduces the convergence value of the objective function by applying deep learning to modify the boundary of the particle swarm optimization. DNNMBPSO is an algorithm that combines heuristic and data driven. In this study, DNNMBPSO is applied for siting study in a system having 50 alternative points, 500 alternative points, and 1000 alternative points and a case of siting of electric vehicle charging stations in Nanning, Guangxi, China. The convergence value of the DNNMBPSO-based objective function is found to be at least 5.5 %, 1.7 %, 8.23 % and 14.7 %, lower compared to genetic algorithms, African vulture optimization algorithm, particle swarm optimization, and grey wolf optimization algorithms, respectively. Traditional heuristic optimization algorithms cannot find optimal solutions in large-scale systems, while DNNMBPSO shows feasibility in large-scale systems.

Suggested Citation

  • Yin, Linfei & Zhang, Yifan, 2024. "Particle swarm optimization based on data driven for EV charging station siting," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029724
    DOI: 10.1016/j.energy.2024.133197
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224029724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bo Zhang & Meng Zhao & Xiangpei Hu, 2023. "Location planning of electric vehicle charging station with users’ preferences and waiting time: multi-objective bi-level programming model and HNSGA-II algorithm," International Journal of Production Research, Taylor & Francis Journals, vol. 61(5), pages 1394-1423, March.
    2. Du, Zhili & Zheng, Lirong & Lin, Boqiang, 2024. "Influence of charging stations accessibility on charging stations utilization," Energy, Elsevier, vol. 298(C).
    3. Bampos, Zafeirios N. & Laitsos, Vasilis M. & Afentoulis, Konstantinos D. & Vagropoulos, Stylianos I. & Biskas, Pantelis N., 2024. "Electric vehicles load forecasting for day-ahead market participation using machine and deep learning methods," Applied Energy, Elsevier, vol. 360(C).
    4. Gharibi, Mohamad Amin & Nafisi, Hamed & Askarian-abyaneh, Hossein & Hajizadeh, Amin, 2023. "Deep learning framework for day-ahead optimal charging scheduling of electric vehicles in parking lot," Applied Energy, Elsevier, vol. 349(C).
    5. Sulaiman, Mohd Herwan & Mustaffa, Zuriani & Zakaria, Nor Farizan & Saari, Mohd Mawardi, 2023. "Using the evolutionary mating algorithm for optimizing deep learning parameters for battery state of charge estimation of electric vehicle," Energy, Elsevier, vol. 279(C).
    6. Fang, Xiaolun & Wang, Yubin & Dong, Wei & Yang, Qiang & Sun, Siyang, 2023. "Optimal energy management of multiple electricity-hydrogen integrated charging stations," Energy, Elsevier, vol. 262(PB).
    7. Ren, Fei & Tian, Chenlu & Zhang, Guiqing & Li, Chengdong & Zhai, Yuan, 2022. "A hybrid method for power demand prediction of electric vehicles based on SARIMA and deep learning with integration of periodic features," Energy, Elsevier, vol. 250(C).
    8. Zhou, Guangyou & Zhu, Zhiwei & Luo, Sumei, 2022. "Location optimization of electric vehicle charging stations: Based on cost model and genetic algorithm," Energy, Elsevier, vol. 247(C).
    9. Zhou, Siyu & Han, Yang & Mahmoud, Karar & Darwish, Mohamed M.F. & Lehtonen, Matti & Yang, Ping & Zalhaf, Amr S., 2023. "A novel unified planning model for distributed generation and electric vehicle charging station considering multi-uncertainties and battery degradation," Applied Energy, Elsevier, vol. 348(C).
    10. Yin, Linfei & Lin, Chen, 2024. "Matrix Wasserstein distance generative adversarial network with gradient penalty for fast low-carbon economic dispatch of novel power systems," Energy, Elsevier, vol. 298(C).
    11. Xing, Zongyi & Zhu, Junlin & Zhang, Zhenyu & Qin, Yong & Jia, Limin, 2022. "Energy consumption optimization of tramway operation based on improved PSO algorithm," Energy, Elsevier, vol. 258(C).
    12. Men, Jinkun & Zhao, Chunmeng, 2024. "A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location," Energy, Elsevier, vol. 293(C).
    13. Huasheng Liu & Yu Li & Chongyu Zhang & Jin Li & Xiaowen Li & Yuqi Zhao, 2022. "Electric Vehicle Charging Station Location Model considering Charging Choice Behavior and Range Anxiety," Sustainability, MDPI, vol. 14(7), pages 1-19, April.
    14. Roy, Avipsa & Law, Mankin, 2022. "Examining spatial disparities in electric vehicle charging station placements using machine learning," SocArXiv hvw2t, Center for Open Science.
    15. Rajani, B. & Kommula, Bapayya Naidu, 2022. "An optimal energy management among the electric vehicle charging stations and electricity distribution system using GPC-RERNN approach," Energy, Elsevier, vol. 245(C).
    16. shafiei, Mohammad & Ghasemi-Marzbali, Ali, 2023. "Electric vehicle fast charging station design by considering probabilistic model of renewable energy source and demand response," Energy, Elsevier, vol. 267(C).
    17. Zhang, Xiaoshun & Guo, Zhengxun & Pan, Feng & Yang, Yuyao & Li, Chuansheng, 2023. "Dynamic carbon emission factor based interactive control of distribution network by a generalized regression neural network assisted optimization," Energy, Elsevier, vol. 283(C).
    18. Chen, Yuanyi & Hu, Simon & Zheng, Yanchong & Xie, Shiwei & Hu, Qinru & Yang, Qiang, 2024. "Coordinated expansion planning of coupled power and transportation networks considering dynamic network equilibrium," Applied Energy, Elsevier, vol. 360(C).
    19. Li, Yanbin & Wang, Jiani & Wang, Weiye & Liu, Chang & Li, Yun, 2023. "Dynamic pricing based electric vehicle charging station location strategy using reinforcement learning," Energy, Elsevier, vol. 281(C).
    20. Yin, Wanjun & Liang, Wenbin & Ji, Jianbo, 2024. "Study on charge and discharge control strategy of improved PSO for EV," Energy, Elsevier, vol. 304(C).
    21. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    22. Wu, Ji & Su, Hao & Meng, Jinhao & Lin, Mingqiang, 2023. "Electric vehicle charging scheduling considering infrastructure constraints," Energy, Elsevier, vol. 278(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    2. Harasis, Salman & Khan, Irfan & Massoud, Ahmed, 2024. "Enabling large-scale integration of electric bus fleets in harsh environments: Possibilities, potentials, and challenges," Energy, Elsevier, vol. 300(C).
    3. Boyu Xiang & Zhengyang Zhou & Shukun Gao & Guoping Lei & Zefu Tan, 2024. "A Planning Method for Charging Station Based on Long-Term Charging Load Forecasting of Electric Vehicles," Energies, MDPI, vol. 17(24), pages 1-20, December.
    4. Zongfeng Zou & Weihao Yang & Shirley Ye Sheng & Xin Yan, 2024. "Research on the Location Selection Problem of Electric Bicycle Battery Exchange Cabinets Based on an Improved Immune Algorithm," Sustainability, MDPI, vol. 16(19), pages 1-21, September.
    5. Young-Eun Jeon & Suk-Bok Kang & Jung-In Seo, 2022. "Hybrid Predictive Modeling for Charging Demand Prediction of Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    6. Loni, Abdolah & Asadi, Somayeh, 2023. "Data-driven equitable placement for electric vehicle charging stations: Case study San Francisco," Energy, Elsevier, vol. 282(C).
    7. Chen, Yuanyi & Zheng, Yanchong & Hu, Simon & Xie, Shiwei & Yang, Qiang, 2024. "Risk-averse energy dispatch for hybrid energy refueling stations considering Boundedly rational mixed user equilibrium and operational uncertainties," Applied Energy, Elsevier, vol. 376(PA).
    8. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.
    9. Men, Jinkun & Zhao, Chunmeng, 2024. "A Type-2 fuzzy hybrid preference optimization methodology for electric vehicle charging station location," Energy, Elsevier, vol. 293(C).
    10. Qian, Tao & Liang, Zeyu & Shao, Chengcheng & Guo, Zishan & Hu, Qinran & Wu, Zaijun, 2025. "Unsupervised learning for efficiently distributing EVs charging loads and traffic flows in coupled power and transportation systems," Applied Energy, Elsevier, vol. 377(PB).
    11. Park, Junseok & Moon, Ilkyeong, 2023. "A facility location problem in a mixed duopoly on networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    12. Shi, Haojie & Xiong, Houbo & Gan, Wei & Lin, Yumian & Guo, Chuangxin, 2025. "Fully distributed planning method for coordinated distribution and urban transportation networks considering three-phase unbalance mitigation," Applied Energy, Elsevier, vol. 377(PA).
    13. Jiang, Ziyue & Han, Jingzuo & Li, Yetong & Chen, Xinyu & Peng, Tianduo & Xiong, Jianliang & Shu, Zhan, 2023. "Charging station layout planning for electric vehicles based on power system flexibility requirements," Energy, Elsevier, vol. 283(C).
    14. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    15. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    16. Ahmadian, Amirhossein & Ghodrati, Vahid & Gadh, Rajit, 2023. "Artificial deep neural network enables one-size-fits-all electric vehicle user behavior prediction framework," Applied Energy, Elsevier, vol. 352(C).
    17. Liu, Xiangfei & Ren, Mifeng & Yang, Zhile & Yan, Gaowei & Guo, Yuanjun & Cheng, Lan & Wu, Chengke, 2022. "A multi-step predictive deep reinforcement learning algorithm for HVAC control systems in smart buildings," Energy, Elsevier, vol. 259(C).
    18. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    19. Pourvaziri, H. & Sarhadi, H. & Azad, N. & Afshari, H. & Taghavi, M., 2024. "Planning of electric vehicle charging stations: An integrated deep learning and queueing theory approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).
    20. Shariatio, O. & Coker, P.J. & Smith, S.T. & Potter, B. & Holderbaum, W., 2024. "An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems," Applied Energy, Elsevier, vol. 369(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s0360544224029724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.