IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224007485.html
   My bibliography  Save this article

Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices

Author

Listed:
  • Carvalho, Diego B.
  • Bortoni, Edson da C.

Abstract

This study presents an optimization-based model with weighted and adjustable parameters, incorporating both deterministic and stochastic variants to enable a smooth transition between control strategies for microgrid management. The motivation to conduct this study arises from an identified gap in the literature on microgrid management, especially as not many studies tackle non-scheduled loads under different energy market policies. Considering this factor, the research objective is to ascertain the technical and economic advantages that the proposed approach offers to a microgrid characterized by a load profile that undergoes significant variations based on the day of the week. A Model Predictive Control (MPC)-based control system is employed as the system manager, using key performance indicators to assess the model’s effectiveness. The control strategy, implemented at the reference signal generator level, is designed to minimize operational costs and curb the Energy Storage System (ESS) degradation. The results demonstrate that the deterministic variant of the proposed model provides a significant quantitative return for the microgrid, especially in more stable load profiles. Additionally, the deterministic variant is a method that allows elucidating a range of values for the weighted parameters of the proposed model, which will be used in the approach stochastic variant. Conversely, the stochastic variant stands out by offering more pronounced benefits to the microgrid in scenarios with abrupt load profiles. Both versions of the model under study exhibit remarkable performance compared to the benchmark models.

Suggested Citation

  • Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007485
    DOI: 10.1016/j.energy.2024.130976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
    2. Abu-Sharkh, S. & Arnold, R.J. & Kohler, J. & Li, R. & Markvart, T. & Ross, J.N. & Steemers, K. & Wilson, P. & Yao, R., 2006. "Can microgrids make a major contribution to UK energy supply?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(2), pages 78-127, April.
    3. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    4. Bicer, Yusuf & Sajid, Muhammad Usman & Al-Breiki, Mohammed, 2022. "Optimal spectra management for self-power producing greenhouses for hot arid climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Obara, Shin'ya & Sato, Katsuaki & Utsugi, Yuta, 2018. "Study on the operation optimization of an isolated island microgrid with renewable energy layout planning," Energy, Elsevier, vol. 161(C), pages 1211-1225.
    6. Oviedo-Cepeda, J.C. & Serna-Suárez, Ivan & Osma-Pinto, German & Duarte, Cesar & Solano, Javier & Gabbar, Hossam A., 2020. "Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning," Energy, Elsevier, vol. 211(C).
    7. Ouédraogo, S. & Faggianelli, G.A. & Notton, G. & Duchaud, J.L. & Voyant, C., 2022. "Impact of electricity tariffs and energy management strategies on PV/Battery microgrid performances," Renewable Energy, Elsevier, vol. 199(C), pages 816-825.
    8. Wang, Bin & Wang, Chaohui & Wang, Zhiyu & Ni, Siliang & Yang, Yixin & Tian, Pengyu, 2023. "Adaptive state of energy evaluation for supercapacitor in emergency power system of more-electric aircraft," Energy, Elsevier, vol. 263(PA).
    9. Abunima, Hamza & Park, Woan-Ho & Glick, Mark B. & Kim, Yun-Su, 2022. "Two-Stage stochastic optimization for operating a Renewable-Based Microgrid," Applied Energy, Elsevier, vol. 325(C).
    10. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid," Applied Energy, Elsevier, vol. 328(C).
    11. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    12. Tsao, Yu-Chung & Linh, Vu-Thuy, 2022. "A new three-part tariff pricing scheme for the electricity microgrid considering consumer regret," Energy, Elsevier, vol. 254(PC).
    13. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.
    14. Xiao, Renxin & Hu, Yanwen & Jia, Xianguang & Chen, Guisheng, 2022. "A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment," Energy, Elsevier, vol. 243(C).
    15. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    16. Renos Rotas & Maria Fotopoulou & Panagiotis Drosatos & Dimitrios Rakopoulos & Nikos Nikolopoulos, 2023. "Adaptive Dynamic Building Envelopes with Solar Power Components: Annual Performance Assessment for Two Pilot Sites," Energies, MDPI, vol. 16(5), pages 1-20, February.
    17. Chakraborty, Amit & Ray, Saheli, 2023. "Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm," Energy, Elsevier, vol. 278(PA).
    18. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    19. Li, Da & Zhang, Lei & Zhang, Zhaosheng & Liu, Peng & Deng, Junjun & Wang, Qiushi & Wang, Zhenpo, 2023. "Battery safety issue detection in real-world electric vehicles by integrated modeling and voltage abnormality," Energy, Elsevier, vol. 284(C).
    20. Nawaz, Arshad & Wu, Jing & Ye, Jun & Dong, Yidi & Long, Chengnian, 2023. "Distributed MPC-based energy scheduling for islanded multi-microgrid considering battery degradation and cyclic life deterioration," Applied Energy, Elsevier, vol. 329(C).
    21. Ritter, Andreas & Widmer, Fabio & Duhr, Pol & Onder, Christopher H., 2022. "Long-term stochastic model predictive control for the energy management of hybrid electric vehicles using Pontryagin’s minimum principle and scenario-based optimization," Applied Energy, Elsevier, vol. 322(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gheouany, Saad & Ouadi, Hamid & El Bakali, Saida, 2024. "Optimal active and reactive energy management for a smart microgrid system under the Moroccan grid pricing code," Energy, Elsevier, vol. 306(C).
    2. Gao, Jinling & Maalla, Allam & Li, Xuetao & Zhou, Xiao & Lian, Kong, 2024. "Comprehensive model for efficient microgrid operation: Addressing uncertainties and economic considerations," Energy, Elsevier, vol. 306(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Hannes Agabus, 2023. "Market Mechanisms and Trading in Microgrid Local Electricity Markets: A Comprehensive Review," Energies, MDPI, vol. 16(5), pages 1-52, February.
    2. Motalleb Miri & Ivan Tolj & Frano Barbir, 2024. "Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources," Energies, MDPI, vol. 17(15), pages 1-26, August.
    3. Cavus, Muhammed & Allahham, Adib & Adhikari, Kabita & Giaouris, Damian, 2024. "A hybrid method based on logic predictive controller for flexible hybrid microgrid with plug-and-play capabilities," Applied Energy, Elsevier, vol. 359(C).
    4. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    5. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    6. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    7. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    8. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    9. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    10. Shuai Jin & Na Qiao & Muhamad Aamir Shafique Khan & Changchun Zhu, 2024. "Promoting the production and consumption of green products from the perspective of supply and demand: An evolutionary game-based analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23193-23213, September.
    11. Silva, Jéssica Alice A. & López, Juan Camilo & Guzman, Cindy Paola & Arias, Nataly Bañol & Rider, Marcos J. & da Silva, Luiz C.P., 2023. "An IoT-based energy management system for AC microgrids with grid and security constraints," Applied Energy, Elsevier, vol. 337(C).
    12. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    13. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    14. Zhang, Ziqi & Li, Peng & Ji, Haoran & Zhao, Jinli & Xi, Wei & Wu, Jianzhong & Wang, Chengshan, 2024. "Combined central-local voltage control of inverter-based DG in active distribution networks11The short version of the paper was presented at CUE2023. This paper is a substantial extension of the short," Applied Energy, Elsevier, vol. 372(C).
    15. Canyang Li & Wenkai Fu & Xi Meng, 2024. "A Contrast Experiment on the Ventilation Direction towards Human Head in Personalized Environmental Control System (PECS)," Sustainability, MDPI, vol. 16(13), pages 1-15, July.
    16. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    17. Fabrizio, Enrico & Seguro, Federico & Filippi, Marco, 2014. "Integrated HVAC and DHW production systems for Zero Energy Buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 515-541.
    18. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin & Lyden, Sarah, 2019. "High penetration renewable generation within Australian isolated and remote power systems," Energy, Elsevier, vol. 168(C), pages 684-692.
    19. Shin, Hyun Ho & Kim, Kibong & Lee, Minwoo & Han, Changho & Kim, Yongchan, 2024. "Maximized thermal energy utilization of surface water-source heat pumps using heat source compensation strategies under low water temperature conditions," Energy, Elsevier, vol. 288(C).
    20. Mohammadpour Shotorbani, Amin & Zeinal-Kheiri, Sevda & Chhipi-Shrestha, Gyan & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224007485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.