IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122001186.html
   My bibliography  Save this article

Optimal spectra management for self-power producing greenhouses for hot arid climates

Author

Listed:
  • Bicer, Yusuf
  • Sajid, Muhammad Usman
  • Al-Breiki, Mohammed

Abstract

The air conditioning in hot and arid climates remains one of the grand challenges for food production in greenhouses. Therefore, significant efforts are given to determine the suitable techniques for effective cooling of greenhouses. Usually, greenhouses are used in colder climates to gather sunlight for heating purposes. However, hot climates with elevated solar irradiation characteristics suffer from high temperatures within the greenhouse. In this study, we propose a unique method solving the extensive cooling requirement of greenhouses in hot arid climates by employing an optimal spectra management strategy. The novel sun-tracking roof design of the greenhouse incorporates hot dielectric mirrors and solar panels, which help to reduce the cooling load and provide electricity to the vapor compression cooling unit. The spectrum above 750 nm is reflected to vertically aligned InGaAs solar cells for additional power generation, whereas the c-Si solar cells are able to provide effective shadowing at noontime without significant comprimise on photosynthetically active radiation (PAR) while producing power. The results showed an average reduction of 28.9% and 25.4% in the cooling load of the proposed greenhouse compared to the conventional greenhouse during the summer and winter seasons for sun tracking hours (10:00 a.m. to 1:00 p.m.), respectively, at a set greenhouse temperature of 28 °C. The proposed greenhouse produced an average of 22.18 kWh/day of electrical energy throughout the year. The novel roof significantly lowers the cooling load and partially meets the energy demand of greenhouses without compromising on photosynthetically active radiations to enter the greenhouse.

Suggested Citation

  • Bicer, Yusuf & Sajid, Muhammad Usman & Al-Breiki, Mohammed, 2022. "Optimal spectra management for self-power producing greenhouses for hot arid climates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001186
    DOI: 10.1016/j.rser.2022.112194
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122001186
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Otanicar, Todd & Dale, John & Orosz, Matthew & Brekke, Nick & DeJarnette, Drew & Tunkara, Ebrima & Roberts, Kenneth & Harikumar, Parameswar, 2018. "Experimental evaluation of a prototype hybrid CPV/T system utilizing a nanoparticle fluid absorber at elevated temperatures," Applied Energy, Elsevier, vol. 228(C), pages 1531-1539.
    2. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of cooling techniques using phase change materials for enhancing efficiency of photovoltaic power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1342-1351.
    3. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    4. Mohamad, Khaled & Ferrer, P., 2019. "Parabolic trough efficiency gain through use of a cavity absorber with a hot mirror," Applied Energy, Elsevier, vol. 238(C), pages 1250-1257.
    5. Alinejad, T. & Yaghoubi, M. & Vadiee, A., 2020. "Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system," Renewable Energy, Elsevier, vol. 156(C), pages 1-13.
    6. Lamnatou, Chr. & Chemisana, D., 2013. "Solar radiation manipulations and their role in greenhouse claddings: Fresnel lenses, NIR- and UV-blocking materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 271-287.
    7. Farrell, Eanna & Hassan, Mohamed I. & Tufa, Ramato A. & Tuomiranta, Arttu & Avci, Ahmet H. & Politano, Antonio & Curcio, Efrem & Arafat, Hassan A., 2017. "Reverse electrodialysis powered greenhouse concept for water- and energy-self-sufficient agriculture," Applied Energy, Elsevier, vol. 187(C), pages 390-409.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peidu & Gao, Xiaoqing & Li, Zhenchao & Zhou, Xiyin, 2022. "Effect of the temperature difference between land and lake on photovoltaic power generation," Renewable Energy, Elsevier, vol. 185(C), pages 86-95.
    2. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    3. Xiao, Yang & Bao, Yanqiong & Yu, Linfeng & Zheng, Xiong & Qin, Guangzhao & Chen, Meijie & He, Maogang, 2023. "Ultra-stable carbon quantum dot nanofluids as excellent spectral beam splitters in PV/T applications," Energy, Elsevier, vol. 273(C).
    4. Wang, Qiushi & Liang, Shen & Zhu, Ziye & Wu, Gang & Su, Yuehong & Zheng, Hongfei, 2019. "Performance of seawater-filling type planting system based on solar distillation process: Numerical and experimental investigation," Applied Energy, Elsevier, vol. 250(C), pages 1225-1234.
    5. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    6. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    7. Yecid Mu oz & Luz Helena Carvajal & Juan Pablo M ndez & Javier Camilo Ni o & Miguel Angel De la Rosa & Adalberto Ospino, 2021. "Technical and Financial Assessment of Photovoltaic Solar Systems for Residential Complexes Considering Three Different Commercial Technologies and Colombia s Energy Policy," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 272-280.
    8. Fontana, Éliton & Battiston, Lucas & Oliveira, Rosivaldo G.A. & Capeletto, Claudia A. & Luz, Luiz F.L., 2022. "Beyond the combustion chamber: Heat transfer and its impact on micro-thermophotovoltaic systems performance," Energy, Elsevier, vol. 239(PC).
    9. Cheng, Qing & Zhang, Xiaosong & Jiao, Shun, 2017. "Influence of concentration difference between dilute cells and regenerate cells on the performance of electrodialysis regenerator," Energy, Elsevier, vol. 140(P1), pages 646-655.
    10. Gilmore, Nicholas & Timchenko, Victoria & Menictas, Chris, 2018. "Microchannel cooling of concentrator photovoltaics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 1041-1059.
    11. Figgis, Benjamin & Ennaoui, Ahmed & Ahzi, Said & Rémond, Yves, 2017. "Review of PV soiling particle mechanics in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 872-881.
    12. Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
    13. Castanheira, André F.A. & Fernandes, João F.P. & Branco, P.J. Costa, 2018. "Demonstration project of a cooling system for existing PV power plants in Portugal," Applied Energy, Elsevier, vol. 211(C), pages 1297-1307.
    14. Gao, Datong & Zhong, Shuai & Ren, Xiao & Kwan, Trevor Hocksun & Pei, Gang, 2022. "The energetic, exergetic, and mechanical comparison of two structurally optimized non-concentrating solar collectors for intermediate temperature applications," Renewable Energy, Elsevier, vol. 184(C), pages 881-898.
    15. Saxena, Ashish & Deshmukh, Sandip & Nirali, Somanath & Wani, Saurabh, 2018. "Laboratory based Experimental Investigation of Photovoltaic (PV) Thermo-control with Water and its Proposed Real-time Implementation," Renewable Energy, Elsevier, vol. 115(C), pages 128-138.
    16. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    17. El-Bashir, S.M. & Al-Harbi, F.F. & Elburaih, H. & Al-Faifi, F. & Yahia, I.S., 2016. "Red photoluminescent PMMA nanohybrid films for modifying the spectral distribution of solar radiation inside greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 928-938.
    18. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    19. Katzin, David & van Henten, Eldert J. & van Mourik, Simon, 2022. "Process-based greenhouse climate models: Genealogy, current status, and future directions," Agricultural Systems, Elsevier, vol. 198(C).
    20. Kim, Byungil & Kim, Changyoon, 2018. "Estimating the effect of module failures on the gross generation of a photovoltaic system using agent-based modeling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1019-1024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122001186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.