IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v378y2025ipas0306261924020245.html
   My bibliography  Save this article

Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning

Author

Listed:
  • Yang, Ting
  • Xu, Zheming
  • Ji, Shijie
  • Liu, Guoliang
  • Li, Xinhong
  • Kong, Haibo

Abstract

The cooperative optimization dispatch of interconnected multi-microgrid (MMG) systems present broad prospects and significant opportunities for the efficient utilization of large-scale renewable energy resources. These systems facilitate the optimal allocation of energy resources and enhance economic efficiency in operational costs. Nevertheless, divergent interests among heterogeneous microgrid (MG) entities during the cooperative optimization dispatch process lead to obstacles in data sharing and issues with privacy breaches. Additionally, the process is complicated by multi-energy coupling relationships and high-dimensional decision-making, which can result in difficulties achieving convergence and a loss of accuracy in energy management. Furthermore, the lack of operational data and dispatch experience in newly established MGs hinders the ability to rapidly “cold start” dispatch tasks. To fill the above knowledge gap, a cooperative optimization dispatch method for MMG is proposed, which based on personalized federated multi-agent reinforcement learning with clustering (C-PFMARL). This method formulates an optimal low-carbon economic dispatch strategy that incorporates electricity and carbon allowance trading within multiple MG systems. Initially, a cooperative training framework for MMG is constructed under the privacy protection of federated reinforcement learning. This framework allows MMG to train optimization dispatch models based on heterogeneous multi-agent twin delayed deep deterministic policy gradient (HMATD3). With the federated aggregation of model gradient parameters instead of transferring private data, this approach achieves a privacy protection effect of “data cooperation without leaving locality “. Secondly, a dual-ended dynamic clustering algorithm for sharing knowledge within groups is proposed, characterized by model intermediate gradient parameters. It employs a personalized federated transfer strategy based on neural network layering, which enhances the convergence speed and dispatch precision under optimal strategies of the local optimization dispatch model. Moreover, a “cold start” transfer strategy aimed at newly established MG entities is formulated, achieving precise assistance and rapid cold start in optimization dispatch experience. Finally, our case analysis validates the effectiveness and training convergence of the constructed dispatch model. The overall integrated cost of the MMG system has been reduced by 5.78 %, and carbon emissions have decreased by 8.43 %. The dispatch cold-start speed for newly established MGs has improved by 42.83 %, with the optimization results also demonstrating robust economic and low-carbon benefits.

Suggested Citation

  • Yang, Ting & Xu, Zheming & Ji, Shijie & Liu, Guoliang & Li, Xinhong & Kong, Haibo, 2025. "Cooperative optimal dispatch of multi-microgrids for low carbon economy based on personalized federated reinforcement learning," Applied Energy, Elsevier, vol. 378(PA).
  • Handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020245
    DOI: 10.1016/j.apenergy.2024.124641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020245
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:378:y:2025:i:pa:s0306261924020245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.