IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics030626192301886x.html
   My bibliography  Save this article

Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador

Author

Listed:
  • Rodriguez, Mauricio
  • Arcos-Aviles, Diego
  • Guinjoan, Francesc

Abstract

Nowadays, the increase in electric power coverage worldwide is a priority scope of the study, where Microgrids (MG) emerge as feasible solutions to supply electricity. The use of MG to provide energy to isolated communities, especially its use as Isolated Multi-Microgrid (IMMG) systems, has become an object of study worldwide. Different control techniques have been developed to improve and optimize the energy management system (EMS) associated with an isolated MG and new alternatives for energy exchange between IMMGs. However, the geographical location of a possible implementation of an MG directly affects the optimal dimensioning, the operating cost, and the environmental impact, among others. In this context, this work proposes a novel design of an EMS based on a fuzzy logic controller focusing on power exchange between IMMG systems. The proposed EMS aims to minimize the consumption of fossil fuels, reduce the total energy wasted by the power generation units, and keep the state-of-charge of the energy storage system (ESS) at safe levels to extend its useful life. Moreover, an ESS state of health analysis is presented to determine its degradation over time when applying the proposed EMS. In addition, the proposed EMS considers the uncertainties in the disconnection of any MG, ensuring the independent operation of each one. Simulation results are performed for a case study of an isolated community in the Amazon region of Ecuador. For this purpose, a group of microgrids is considered in three different scenarios. In the first scenario, there is no power exchange between the microgrids. In the second scenario, the microgrids exchange power using a simple EMS based on a set of analytical rules, and in the third scenario, the microgrids exchange power using the proposed EMS. The results show an improvement in the overall performance of the third scenario compared to the first two, both in reducing the energy wasted by the PV system and in the cost of fossil fuel. Finally, the experimental validation, using Typhoon Hardware-in-the-loop HIL-402 devices in real-time operation, highlights the proposed EMS's effectiveness and feasibility for IMMG systems.

Suggested Citation

  • Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301886x
    DOI: 10.1016/j.apenergy.2023.122522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301886X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosero, D.G. & Sanabria, E. & Díaz, N.L. & Trujillo, C.L. & Luna, A. & Andrade, F., 2023. "Full-deployed energy management system tested in a microgrid cluster," Applied Energy, Elsevier, vol. 334(C).
    2. Matteo Moncecchi & Claudio Brivio & Stefano Mandelli & Marco Merlo, 2020. "Battery Energy Storage Systems in Microgrids: Modeling and Design Criteria," Energies, MDPI, vol. 13(8), pages 1-18, April.
    3. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    4. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    5. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2020. "Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities," Applied Energy, Elsevier, vol. 258(C).
    6. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    7. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    8. Banal-Estañol, Albert & Calzada, Joan & Jordana, Jacint, 2017. "How to achieve full electrification: Lessons from Latin America," Energy Policy, Elsevier, vol. 108(C), pages 55-69.
    9. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    10. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.
    12. Mehigan, L. & Deane, J.P. & Gallachóir, B.P.Ó. & Bertsch, V., 2018. "A review of the role of distributed generation (DG) in future electricity systems," Energy, Elsevier, vol. 163(C), pages 822-836.
    13. Nawaz, Arshad & Wu, Jing & Ye, Jun & Dong, Yidi & Long, Chengnian, 2023. "Distributed MPC-based energy scheduling for islanded multi-microgrid considering battery degradation and cyclic life deterioration," Applied Energy, Elsevier, vol. 329(C).
    14. Diptish Saha & Najmeh Bazmohammadi & Juan C. Vasquez & Josep M. Guerrero, 2023. "Multiple Microgrids: A Review of Architectures and Operation and Control Strategies," Energies, MDPI, vol. 16(2), pages 1-32, January.
    15. Berrueta, Alberto & Heck, Michael & Jantsch, Martin & Ursúa, Alfredo & Sanchis, Pablo, 2018. "Combined dynamic programming and region-elimination technique algorithm for optimal sizing and management of lithium-ion batteries for photovoltaic plants," Applied Energy, Elsevier, vol. 228(C), pages 1-11.
    16. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    17. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    18. Javier Marcos & Iñigo De la Parra & Miguel García & Luis Marroyo, 2014. "Control Strategies to Smooth Short-Term Power Fluctuations in Large Photovoltaic Plants Using Battery Storage Systems," Energies, MDPI, vol. 7(10), pages 1-27, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    2. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.
    3. Mohammad Hemmati & Navid Bayati & Thomas Ebel, 2024. "Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework," Energies, MDPI, vol. 17(17), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    2. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    3. Youssef Elomari & Masoud Norouzi & Marc Marín-Genescà & Alberto Fernández & Dieter Boer, 2022. "Integration of Solar Photovoltaic Systems into Power Networks: A Scientific Evolution Analysis," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    4. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    5. Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Masrur, Hasan & Khaloie, Hooman & Al-Awami, Ali T. & Ferik, Sami El & Senjyu, Tomonobu, 2024. "Cost-aware modeling and operation of interconnected multi-energy microgrids considering environmental and resilience impact," Applied Energy, Elsevier, vol. 356(C).
    7. Ronaldo Silveira Junior, Jose & Conrado, Bruna R.P. & Matheus dos Santos Alonso, Augusto & Iglesias Brandao, Danilo, 2023. "Interoperability of single-controllable clusters: Aggregate response of low-voltage microgrids," Applied Energy, Elsevier, vol. 340(C).
    8. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    9. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    10. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    11. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    12. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    13. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    14. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    15. Luo, Lizi & Wu, Zhi & Gu, Wei & Huang, He & Gao, Song & Han, Jun, 2020. "Coordinated allocation of distributed generation resources and electric vehicle charging stations in distribution systems with vehicle-to-grid interaction," Energy, Elsevier, vol. 192(C).
    16. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    17. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    18. Solomon Kiros & Baseem Khan & Sanjeevikumar Padmanaban & Hassan Haes Alhelou & Zbigniew Leonowicz & Om Prakash Mahela & Jens Bo Holm-Nielsen, 2020. "Development of Stand-Alone Green Hybrid System for Rural Areas," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    19. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    20. Abdul Munim Rehmani & Syed Ali Abbas Kazmi & Abdullah Altamimi & Zafar A. Khan & Muhammad Awais, 2023. "Techno-Economic-Environmental Assessment of an Isolated Rural Micro-Grid from a Mid-Career Repowering Perspective," Sustainability, MDPI, vol. 15(3), pages 1-35, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s030626192301886x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.