IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012367.html
   My bibliography  Save this article

Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm

Author

Listed:
  • Chakraborty, Amit
  • Ray, Saheli

Abstract

Microgrid (MG) with battery energy storage system (BESS) is the best for distribution system automation and hosting renewable energies. The proliferation of plug-in hybrid electric vehicles (PHEV) in distribution networks without energy management (EM) puts additional pressure on the utility and creates challenges for MG. This research article proposes a stochastic expert method to minimize the total operational cost through proper EM of a grid-connected low-voltage MG by considering the charging impact of PHEVs with the optimal size of BESS. Three strategies are used to control the PHEV charging demand. Economically improved performance of MG is obtained as compared to previous research without considering the daily cost of the BESS (fBESS) and operation and maintenance cost of different distributed generation sources (OMcost). Then, the study is extended by incorporating these two parameters into the objective function of operational cost. Finally, this article analyzes to what extent the fBESS and OMcost factors raise the microgrid's operational cost. Due to non-linear optimization issues, the slime mould algorithm (SMA) is proposed, which performed better EM with a lower operational cost of MG than other methods.

Suggested Citation

  • Chakraborty, Amit & Ray, Saheli, 2023. "Operational cost minimization of a microgrid with optimum battery energy storage system and plug-in-hybrid electric vehicle charging impact using slime mould algorithm," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012367
    DOI: 10.1016/j.energy.2023.127842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Sharmistha & Bhattacharjee, Subhadeep & Bhattacharya, Aniruddha, 2018. "Probabilistic operation cost minimization of Micro-Grid," Energy, Elsevier, vol. 148(C), pages 1116-1139.
    2. Zandrazavi, Seyed Farhad & Guzman, Cindy Paola & Pozos, Alejandra Tabares & Quiros-Tortos, Jairo & Franco, John Fredy, 2022. "Stochastic multi-objective optimal energy management of grid-connected unbalanced microgrids with renewable energy generation and plug-in electric vehicles," Energy, Elsevier, vol. 241(C).
    3. Moghaddam, Amjad Anvari & Seifi, Alireza & Niknam, Taher & Alizadeh Pahlavani, Mohammad Reza, 2011. "Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source," Energy, Elsevier, vol. 36(11), pages 6490-6507.
    4. V, Kavitha & V, Malathi & Guerrero, Josep M. & Bazmohammadi, Najmeh, 2022. "Energy management system using Mimosa Pudica optimization technique for microgrid applications," Energy, Elsevier, vol. 244(PA).
    5. Chen, Tengpeng & Cao, Yuhao & Qing, Xinlin & Zhang, Jingrui & Sun, Yuhao & Amaratunga, Gehan A.J., 2022. "Multi-energy microgrid robust energy management with a novel decision-making strategy," Energy, Elsevier, vol. 239(PA).
    6. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    7. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    8. Xiaodan Liang & Dong Wu & Yang Liu & Maowei He & Liling Sun & Juan L. G. Guirao, 2021. "An Enhanced Slime Mould Algorithm and Its Application for Digital IIR Filter Design," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).
    2. Chakraborty, Amit & Ray, Saheli, 2024. "Economic and environmental factors based multi-objective approach for optimizing energy management in a microgrid," Renewable Energy, Elsevier, vol. 222(C).
    3. Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    2. Ho-Sung Ryu & Mun-Kyeom Kim, 2020. "Two-Stage Optimal Microgrid Operation with a Risk-Based Hybrid Demand Response Program Considering Uncertainty," Energies, MDPI, vol. 13(22), pages 1-25, November.
    3. Tabatabaee, Sajad & Mortazavi, Seyed Saeedallah & Niknam, Taher, 2016. "Stochastic energy management of renewable micro-grids in the correlated environment using unscented transformation," Energy, Elsevier, vol. 109(C), pages 365-377.
    4. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    5. Chakraborty, Amit & Ray, Saheli, 2024. "Economic and environmental factors based multi-objective approach for optimizing energy management in a microgrid," Renewable Energy, Elsevier, vol. 222(C).
    6. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    7. Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    8. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    9. Aziz, Muhammad & Oda, Takuya & Ito, Masakazu, 2016. "Battery-assisted charging system for simultaneous charging of electric vehicles," Energy, Elsevier, vol. 100(C), pages 82-90.
    10. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    11. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    12. Ari, Izzet & Yikmaz, Riza Fikret, 2019. "The role of renewable energy in achieving Turkey's INDC," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 244-251.
    13. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    14. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    15. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    16. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    17. Konečná, Eva & Teng, Sin Yong & Máša, Vítězslav, 2020. "New insights into the potential of the gas microturbine in microgrids and industrial applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Wang, Chengshan & Liu, Yixin & Li, Xialin & Guo, Li & Qiao, Lei & Lu, Hai, 2016. "Energy management system for stand-alone diesel-wind-biomass microgrid with energy storage system," Energy, Elsevier, vol. 97(C), pages 90-104.
    19. Zunaira Nadeem & Nadeem Javaid & Asad Waqar Malik & Sohail Iqbal, 2018. "Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes," Energies, MDPI, vol. 11(4), pages 1-30, April.
    20. Matthew, George Jr. & Nuttall, William J & Mestel, Ben & Dooley, Laurence S, 2017. "A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system," Energy Policy, Elsevier, vol. 109(C), pages 121-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.