IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3814-d1448751.html
   My bibliography  Save this article

Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources

Author

Listed:
  • Motalleb Miri

    (KONČAR—Electrical Engineering Institute Ltd., 10 000 Zagreb, Croatia)

  • Ivan Tolj

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21 000 Split, Croatia)

  • Frano Barbir

    (Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21 000 Split, Croatia)

Abstract

The telecommunication industry relies heavily on a reliable and continuous power supply. Traditional power sources like diesel generators have long been the backbone of telecom infrastructure. However, the growing demand for sustainable and eco-friendly solutions has spurred interest in renewable energy sources. Proton exchange membrane (PEM) fuel cell-based systems, integrated with solar and wind energy, offer a promising alternative. This review explores the potential of these hybrid systems in stationary telecom applications, providing a comprehensive overview of their architecture, energy management, and storage solutions. As the demand for telecommunication services grows, so does the need for a reliable power supply. Diesel generators are linked with high operational costs, noise pollution, and significant greenhouse gas emissions, prompting a search for more sustainable alternatives. This review analyzes the current state of PEM fuel cell systems in telecom applications, examines the architecture of microgrids incorporating renewable energy sources, and discusses optimization methods, challenges, and future directions for energy storage systems. Critical findings and recommendations are presented, highlighting objectives and constraints for future developments. Leveraging these technologies can help the telecom industry reduce fossil fuel reliance, lower operational costs, minimize environmental impact, and increase system reliability.

Suggested Citation

  • Motalleb Miri & Ivan Tolj & Frano Barbir, 2024. "Review of Proton Exchange Membrane Fuel Cell-Powered Systems for Stationary Applications Using Renewable Energy Sources," Energies, MDPI, vol. 17(15), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3814-:d:1448751
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiang, Yue & Cai, Hanhu & Liu, Junyong & Zhang, Xin, 2021. "Techno-economic design of energy systems for airport electrification: A hydrogen-solar-storage integrated microgrid solution," Applied Energy, Elsevier, vol. 283(C).
    2. Shao, Zhentong & Cao, Xiaoyu & Zhai, Qiaozhu & Guan, Xiaohong, 2023. "Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems," Applied Energy, Elsevier, vol. 334(C).
    3. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    4. Fang, Xiaolun & Dong, Wei & Wang, Yubin & Yang, Qiang, 2022. "Multiple time-scale energy management strategy for a hydrogen-based multi-energy microgrid," Applied Energy, Elsevier, vol. 328(C).
    5. Lyu, Chenghao & Zhang, Yuchen & Bai, Yilin & Yang, Kun & Song, Zhengxiang & Ma, Yuhang & Meng, Jinhao, 2024. "Inner-outer layer co-optimization of sizing and energy management for renewable energy microgrid with storage," Applied Energy, Elsevier, vol. 363(C).
    6. Dong, Yuchen & Zheng, Weibo & Cao, Xiaoyu & Sun, Xunhang & He, Zhengwen, 2023. "Co-planning of hydrogen-based microgrids and fuel-cell bus operation centers under low-carbon and resilience considerations," Applied Energy, Elsevier, vol. 336(C).
    7. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    8. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    9. K/bidi, Fabrice & Damour, Cedric & Grondin, Dominique & Hilairet, Mickaël & Benne, Michel, 2022. "Multistage power and energy management strategy for hybrid microgrid with photovoltaic production and hydrogen storage," Applied Energy, Elsevier, vol. 323(C).
    10. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    11. Giovanniello, Michael Anthony & Wu, Xiao-Yu, 2023. "Hybrid lithium-ion battery and hydrogen energy storage systems for a wind-supplied microgrid," Applied Energy, Elsevier, vol. 345(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    2. Lucian-Ioan Dulău, 2023. "Power Cost and CO 2 Emissions for a Microgrid with Hydrogen Storage and Electric Vehicles," Sustainability, MDPI, vol. 15(22), pages 1-25, November.
    3. Li, Zichen & Xia, Yanghong & Bo, Yaolong & Wei, Wei, 2024. "Optimal planning for electricity-hydrogen integrated energy system considering multiple timescale operations and representative time-period selection," Applied Energy, Elsevier, vol. 362(C).
    4. Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).
    5. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    6. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    7. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    8. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).
    9. Jimmy Gallegos & Paul Arévalo & Christian Montaleza & Francisco Jurado, 2024. "Sustainable Electrification—Advances and Challenges in Electrical-Distribution Networks: A Review," Sustainability, MDPI, vol. 16(2), pages 1-33, January.
    10. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    11. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    12. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    13. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    14. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    15. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).
    16. Tostado-Véliz, Marcos & Rezaee Jordehi, Ahmad & Fernández-Lobato, Lázuli & Jurado, Francisco, 2023. "Robust energy management in isolated microgrids with hydrogen storage and demand response," Applied Energy, Elsevier, vol. 345(C).
    17. Mokhtar Aly & Emad A. Mohamed & Abdullah M. Noman & Emad M. Ahmed & Fayez F. M. El-Sousy & Masayuki Watanabe, 2023. "Optimized Non-Integer Load Frequency Control Scheme for Interconnected Microgrids in Remote Areas with High Renewable Energy and Electric Vehicle Penetrations," Mathematics, MDPI, vol. 11(9), pages 1-31, April.
    18. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    19. Zhang, Yue & Wu, Qiong & Ren, Hongbo & Li, Qifen & Zhou, Weisheng, 2024. "Optimal operation of multi-microgrid systems considering multi-level energy-certificate-carbon coupling trading," Renewable Energy, Elsevier, vol. 227(C).
    20. Cui, Shiting & Gao, Yao & Zhu, Ruijin, 2024. "A new integrated energy system cluster energy sharing framework adapted to high altitude areas," Applied Energy, Elsevier, vol. 366(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3814-:d:1448751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.