IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics036054422303205x.html
   My bibliography  Save this article

Improved Pelican optimization algorithm for solving load dispatch problems

Author

Listed:
  • SeyedGarmroudi, SeyedDavoud
  • Kayakutlu, Gulgun
  • Kayalica, M. Ozgur
  • Çolak, Üner

Abstract

The Pelican Optimization Algorithm (POA) is a newly developed algorithm inspired by the hunting behavior of pelicans. Despite its fast convergence rate, it suffers from premature convergence, the imbalance between exploration and exploitation, and lack of population diversity. In this work, an improved POA is proposed to attenuate these shortcomings. IPOA benefits from three motion strategies and predefined knowledge-sharing factors that better describe the stochastic hunting behavior of pelicans, as well as a modified dimension-learning-based hunting (DHL) behavior to retain diversity. To test the effectiveness of these improvements, it was used to solve 23 benchmark functions, including unimodal, multimodal, and 6 composite functions (CEC 2017). To evaluate performance, it was applied to solve economic and combined economic emission load dispatch problems that play a critical role in real-world power system planning and operation while considering environmental impacts. This experiment includes 6, 10, 11, 40, 140, 160, and 320 generating units with nonconvex and non-smooth objective functions. The comparison is performed for benchmark functions and the optimal dispatch problems. The results confirm the competitive and almost superior performance of the IPOA in several cases, which proves the applicability and efficiency of the proposed approach in solving real-world problems.

Suggested Citation

  • SeyedGarmroudi, SeyedDavoud & Kayakutlu, Gulgun & Kayalica, M. Ozgur & Çolak, Üner, 2024. "Improved Pelican optimization algorithm for solving load dispatch problems," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303205x
    DOI: 10.1016/j.energy.2023.129811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422303205X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Anbo & Li, Jinbei & Yin, Hao, 2016. "An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects," Energy, Elsevier, vol. 113(C), pages 1147-1161.
    2. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    3. Wang, Yajun & Wang, Jidong & Cao, Man & Kong, Xiangyu & Abderrahim, Bouchedjira & Yuan, Long & Vartosh, Aris, 2023. "Dynamic emission dispatch considering the probabilistic model with multiple smart energy system players based on a developed fuzzy theory-based harmony search algorithm," Energy, Elsevier, vol. 269(C).
    4. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    5. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    6. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
    7. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhao, Shuang-Le & You, Guo-Dong & Hou, Xiao-Xin & Yu, Jia-Li & Li, Ling-Ling & Chen, Bo, 2023. "Improving the economic and environmental benefits of the energy system: A novel hybrid economic emission dispatch considering clean energy power uncertainty," Energy, Elsevier, vol. 285(C).
    8. Xiong, Guojiang & Shuai, Maohang & Hu, Xiao, 2022. "Combined heat and power economic emission dispatch using improved bare-bone multi-objective particle swarm optimization," Energy, Elsevier, vol. 244(PB).
    9. Zhang, Le & Khishe, Mohammad & Mohammadi, Mokhtar & Mohammed, Adil Hussein, 2022. "Environmental economic dispatch optimization using niching penalized chimp algorithm," Energy, Elsevier, vol. 261(PA).
    10. Abdelaziz, A.Y. & Ali, E.S. & Abd Elazim, S.M., 2016. "Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems," Energy, Elsevier, vol. 101(C), pages 506-518.
    11. Ahmed, Ijaz & Rehan, Muhammad & Basit, Abdul & Malik, Saddam Hussain & Alvi, Um-E-Habiba & Hong, Keum-Shik, 2022. "Multi-area economic emission dispatch for large-scale multi-fueled power plants contemplating inter-connected grid tie-lines power flow limitations," Energy, Elsevier, vol. 261(PB).
    12. Al-Bahrani, Loau Tawfak & Horan, Ben & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Dynamic economic emission dispatch with load dema nd management for the load demand of electric vehicles during crest shaving and valley filling in smart cities environment," Energy, Elsevier, vol. 195(C).
    13. Vahidinasab, V. & Jadid, S., 2010. "Joint economic and emission dispatch in energy markets: A multiobjective mathematical programming approach," Energy, Elsevier, vol. 35(3), pages 1497-1504.
    14. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Azizipanah-Abarghooee, Rasoul, 2013. "An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties," Energy, Elsevier, vol. 50(C), pages 232-244.
    15. Moretti, L. & Polimeni, S. & Meraldi, L. & Raboni, P. & Leva, S. & Manzolini, G., 2019. "Assessing the impact of a two-layer predictive dispatch algorithm on design and operation of off-grid hybrid microgrids," Renewable Energy, Elsevier, vol. 143(C), pages 1439-1453.
    16. Shaabani, Yousef ali & Seifi, Ali Reza & Kouhanjani, Masoud Joker, 2017. "Stochastic multi-objective optimization of combined heat and power economic/emission dispatch," Energy, Elsevier, vol. 141(C), pages 1892-1904.
    17. Zou, Dexuan & Gong, Dunwei, 2022. "Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch," Energy, Elsevier, vol. 238(PA).
    18. Bahmani-Firouzi, Bahman & Farjah, Ebrahim & Seifi, Alireza, 2013. "A new algorithm for combined heat and power dynamic economic dispatch considering valve-point effects," Energy, Elsevier, vol. 52(C), pages 320-332.
    19. Sharifian, Yeganeh & Abdi, Hamdi, 2023. "Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm," Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Sattar, Hoda Abd & Hassan, Mohamed H. & Vera, David & Jurado, Francisco & Kamel, Salah, 2024. "Maximizing hybrid microgrid system performance: A comparative analysis and optimization using a gradient pelican algorithm," Renewable Energy, Elsevier, vol. 227(C).
    2. Carvalho, Diego B. & Bortoni, Edson da C., 2024. "Proposed model with weighted parameters for microgrid management: Incorporating diverse load profiles, assorted tariff policies, and energy storage devices," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Qiang & Zou, Dexuan & Duan, Na, 2023. "An improved differential evolution using self-adaptable cosine similarity for economic emission dispatch," Energy, Elsevier, vol. 283(C).
    2. Yang, Wenqiang & Zhu, Xinxin & Xiao, Qinge & Yang, Zhile, 2023. "Enhanced multi-objective marine predator algorithm for dynamic economic-grid fluctuation dispatch with plug-in electric vehicles," Energy, Elsevier, vol. 282(C).
    3. Zou, Dexuan & Gong, Dunwei & Ouyang, Haibin, 2023. "The dynamic economic emission dispatch of the combined heat and power system integrated with a wind farm and a photovoltaic plant," Applied Energy, Elsevier, vol. 351(C).
    4. Arul, R. & Velusami, S. & Ravi, G., 2015. "A new algorithm for combined dynamic economic emission dispatch with security constraints," Energy, Elsevier, vol. 79(C), pages 496-511.
    5. Xu, Shengping & Xiong, Guojiang & Mohamed, Ali Wagdy & Bouchekara, Houssem R.E.H., 2022. "Forgetting velocity based improved comprehensive learning particle swarm optimization for non-convex economic dispatch problems with valve-point effects and multi-fuel options," Energy, Elsevier, vol. 256(C).
    6. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    7. Mehmood, Ammara & Raja, Muhammad Asif Zahoor & Jalili, Mahdi, 2023. "Optimization of integrated load dispatch in multi-fueled renewable rich power systems using fractal firefly algorithm," Energy, Elsevier, vol. 278(PA).
    8. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    9. Lai, Wenhao & Zheng, Xiaoliang & Song, Qi & Hu, Feng & Tao, Qiong & Chen, Hualiang, 2022. "Multi-objective membrane search algorithm: A new solution for economic emission dispatch," Applied Energy, Elsevier, vol. 326(C).
    10. Liu, Zhi-Feng & Zhao, Shi-Xiang & Zhang, Xi-Jia & Tang, Yu & You, Guo-Dong & Li, Ji-Xiang & Zhao, Shuang-Le & Hou, Xiao-Xin, 2023. "Renewable energy utilizing and fluctuation stabilizing using optimal dynamic grid connection factor strategy and artificial intelligence-based solution method," Renewable Energy, Elsevier, vol. 219(P1).
    11. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    12. Yu, Xiaobing & Duan, Yuchen & Luo, Wenguan, 2022. "A knee-guided algorithm to solve multi-objective economic emission dispatch problem," Energy, Elsevier, vol. 259(C).
    13. Basu, M., 2023. "Multi-county combined heat and power dynamic economic emission dispatch incorporating electric vehicle parking lot," Energy, Elsevier, vol. 275(C).
    14. Xu Chen & Shuai Fang & Kangji Li, 2023. "Reinforcement-Learning-Based Multi-Objective Differential Evolution Algorithm for Large-Scale Combined Heat and Power Economic Emission Dispatch," Energies, MDPI, vol. 16(9), pages 1-23, April.
    15. Shin, Hansol & Kim, Wook, 2023. "Comparison of the centralized and decentralized environmentally constrained economic dispatch methods of coal-fired generators: A case study for South Korea," Energy, Elsevier, vol. 275(C).
    16. Lai, Wenhao & Song, Qi & Zheng, Xiaoliang & Tao, Qiong & Chen, Hualiang, 2023. "A new version of membrane search algorithm for hybrid renewable energy systems dynamic scheduling," Renewable Energy, Elsevier, vol. 209(C), pages 262-276.
    17. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    18. Shin, Hansol & Kim, Tae Hyun & Kim, Hyoungtae & Lee, Sungwoo & Kim, Wook, 2019. "Environmental shutdown of coal-fired generators for greenhouse gas reduction: A case study of South Korea," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Zou, Dexuan & Gong, Dunwei, 2022. "Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch," Energy, Elsevier, vol. 238(PA).
    20. Jabari, Farkhondeh & Jabari, Hamid & Mohammadi-ivatloo, Behnam & Ghafouri, Jafar, 2019. "Optimal short-term coordination of water-heat-power nexus incorporating plug-in electric vehicles and real-time demand response programs," Energy, Elsevier, vol. 174(C), pages 708-723.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s036054422303205x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.