IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i14p6102-d1436965.html
   My bibliography  Save this article

Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer

Author

Listed:
  • Xilong Lin

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Yisen Niu

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Zixuan Yan

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Lianglin Zou

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Ping Tang

    (School of New Energy, North China Electric Power University, Beijing 102206, China)

  • Jifeng Song

    (Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China)

Abstract

Accurate forecasting of PV power not only enhances the utilization of solar energy but also assists power system operators in planning and executing efficient power management. The Temporal Convolutional Network (TCN) is utilized for feature extraction from the data, while the White Shark Optimization (WSO) algorithm optimizes the TCN parameters. Given the extensive dataset and the complex variables influencing PV output in this study, the maximal information coefficient (MIC) method is employed. Initially, mutual information values are computed for the base data, and less significant variables are eliminated. Subsequently, the refined data are fed into the TCN, which is fine-tuned using WSO. Finally, the model outputs the prediction results. For testing, one year of data from a dual-axis tracking PV system is used, and the robustness of the model is further confirmed using data from single-axis and stationary PV systems. The findings demonstrate that the MIC-WSO-TCN model outperforms several benchmark models in terms of accuracy and reliability for predicting PV power.

Suggested Citation

  • Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6102-:d:1436965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/14/6102/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/14/6102/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdul Rauf Bhatti & Ahmed Bilal Awan & Walied Alharbi & Zainal Salam & Abdullah S. Bin Humayd & Praveen R. P. & Kankar Bhattacharya, 2021. "An Improved Approach to Enhance Training Performance of ANN and the Prediction of PV Power for Any Time-Span without the Presence of Real-Time Weather Data," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    2. Akhter, Muhammad Naveed & Mekhilef, Saad & Mokhlis, Hazlie & Ali, Raza & Usama, Muhammad & Muhammad, Munir Azam & Khairuddin, Anis Salwa Mohd, 2022. "A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems," Applied Energy, Elsevier, vol. 307(C).
    3. Renos Rotas & Maria Fotopoulou & Panagiotis Drosatos & Dimitrios Rakopoulos & Nikos Nikolopoulos, 2023. "Adaptive Dynamic Building Envelopes with Solar Power Components: Annual Performance Assessment for Two Pilot Sites," Energies, MDPI, vol. 16(5), pages 1-20, February.
    4. Wang, Yun & Xu, Houhua & Song, Mengmeng & Zhang, Fan & Li, Yifen & Zhou, Shengchao & Zhang, Lingjun, 2023. "A convolutional Transformer-based truncated Gaussian density network with data denoising for wind speed forecasting," Applied Energy, Elsevier, vol. 333(C).
    5. Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
    6. Wang, Yuhan & Zhang, Chu & Fu, Yongyan & Suo, Leiming & Song, Shihao & Peng, Tian & Shahzad Nazir, Muhammad, 2023. "Hybrid solar radiation forecasting model with temporal convolutional network using data decomposition and improved artificial ecosystem-based optimization algorithm," Energy, Elsevier, vol. 280(C).
    7. Yongfeng Ma & Shuyan Chen & Aemal J. Khattak & Zheng Cao & Muhammad Zubair & Xue Han & Xiaojian Hu, 2022. "What Affects Emotional Well-Being during Travel? Identifying the Factors by Maximal Information Coefficient," IJERPH, MDPI, vol. 19(7), pages 1-10, April.
    8. Sharadga, Hussein & Hajimirza, Shima & Balog, Robert S., 2020. "Time series forecasting of solar power generation for large-scale photovoltaic plants," Renewable Energy, Elsevier, vol. 150(C), pages 797-807.
    9. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
    10. Ahmed Fathy & Abdulmohsen Alanazi, 2023. "An Efficient White Shark Optimizer for Enhancing the Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(15), pages 1-21, July.
    11. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Min & Rao, Congjun & Xiao, Xinping & Hu, Zhuo & Goh, Mark, 2024. "Efficient shrinkage temporal convolutional network model for photovoltaic power prediction," Energy, Elsevier, vol. 297(C).
    2. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    3. du Plessis, A.A. & Strauss, J.M. & Rix, A.J., 2021. "Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour," Applied Energy, Elsevier, vol. 285(C).
    4. Hongchao Zhang & Tengteng Zhu, 2022. "Stacking Model for Photovoltaic-Power-Generation Prediction," Sustainability, MDPI, vol. 14(9), pages 1-16, May.
    5. Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
    6. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    7. Azizi, Narjes & Yaghoubirad, Maryam & Farajollahi, Meisam & Ahmadi, Abolfzl, 2023. "Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output," Renewable Energy, Elsevier, vol. 206(C), pages 135-147.
    8. Gulay, Emrah & Sen, Mustafa & Akgun, Omer Burak, 2024. "Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models," Energy, Elsevier, vol. 286(C).
    9. Bellido-Jiménez, Juan Antonio & Estévez Gualda, Javier & García-Marín, Amanda Penélope, 2021. "Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions," Applied Energy, Elsevier, vol. 298(C).
    10. Qu, Jiaqi & Qian, Zheng & Pei, Yan, 2021. "Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern," Energy, Elsevier, vol. 232(C).
    11. Yunzhu Gao & Jun Wang & Lin Guo & Hong Peng, 2024. "Short-Term Photovoltaic Power Prediction Using Nonlinear Spiking Neural P Systems," Sustainability, MDPI, vol. 16(4), pages 1-18, February.
    12. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    14. Perera, Maneesha & De Hoog, Julian & Bandara, Kasun & Senanayake, Damith & Halgamuge, Saman, 2024. "Day-ahead regional solar power forecasting with hierarchical temporal convolutional neural networks using historical power generation and weather data," Applied Energy, Elsevier, vol. 361(C).
    15. Jinfeng Wang & Wenshan Hu & Lingfeng Xuan & Feiwu He & Chaojie Zhong & Guowei Guo, 2024. "TransPVP: A Transformer-Based Method for Ultra-Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 17(17), pages 1-19, September.
    16. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Zhang, Jun & Shi, Junsheng & Gao, Bixuan & Liu, Wuming, 2021. "Hybrid deep neural model for hourly solar irradiance forecasting," Renewable Energy, Elsevier, vol. 171(C), pages 1041-1060.
    17. Michael, Neethu Elizabeth & Bansal, Ramesh C. & Ismail, Ali Ahmed Adam & Elnady, A. & Hasan, Shazia, 2024. "A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation," Renewable Energy, Elsevier, vol. 222(C).
    18. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    19. Ren, Xiaoying & Zhang, Fei & Zhu, Honglu & Liu, Yongqian, 2022. "Quad-kernel deep convolutional neural network for intra-hour photovoltaic power forecasting," Applied Energy, Elsevier, vol. 323(C).
    20. Lee, Donghun & Kim, Kwanho, 2021. "PV power prediction in a peak zone using recurrent neural networks in the absence of future meteorological information," Renewable Energy, Elsevier, vol. 173(C), pages 1098-1110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:14:p:6102-:d:1436965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.