IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035065.html
   My bibliography  Save this article

Exploring the effects of mineral depletion on renewable energy technologies net energy returns

Author

Listed:
  • Aramendia, Emmanuel
  • Brockway, Paul E.
  • Taylor, Peter G.
  • Norman, Jonathan B.

Abstract

The energy transition poses a set of new challenges related to mineral scarcity and depletion. The process of mineral depletion is characterised by increasing energy consumption per tonne of valuable minerals mined (i.e. energy intensity of mining), due to the decline in the quality of mined deposits. As renewable energy technologies are heavily reliant on a range of minerals, some of them scarce, the net energy returns (i.e., the share of energy available to provide energy services) of renewable energy technologies may be significantly affected by this decline. This may in turn jeopardise the ability of renewable energy technologies to provide sufficient net energy, and hence, support decent living standards. The aim of this article is therefore to explore, using net energy analysis techniques combined with Life Cycle Analysis data, the effects of mineral depletion on the net energy returns of four renewable energy technologies: solar photovoltaic, concentrated solar power, onshore wind, and offshore wind.

Suggested Citation

  • Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035065
    DOI: 10.1016/j.energy.2023.130112
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aramendia, Emmanuel & Heun, Matthew K. & Brockway, Paul E. & Taylor, Peter G., 2022. "Developing a Multi-Regional Physical Supply Use Table framework to improve the accuracy and reliability of energy analysis," Applied Energy, Elsevier, vol. 310(C).
    2. Sicong Tian & Jianguo Jiang & Zuotai Zhang & Vasilije Manovic, 2018. "Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
    3. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    4. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel, 2018. "Material bottlenecks in the future development of green technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 178-200.
    5. Kleijn, René & van der Voet, Ester & Kramer, Gert Jan & van Oers, Lauran & van der Giesen, Coen, 2011. "Metal requirements of low-carbon power generation," Energy, Elsevier, vol. 36(9), pages 5640-5648.
    6. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    7. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    8. Sers, Martin R. & Victor, Peter A., 2018. "The Energy-emissions Trap," Ecological Economics, Elsevier, vol. 151(C), pages 10-21.
    9. Ester Van der Voet & Lauran Van Oers & Miranda Verboon & Koen Kuipers, 2019. "Environmental Implications of Future Demand Scenarios for Metals: Methodology and Application to the Case of Seven Major Metals," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 141-155, February.
    10. Vincent Moreau & Piero Carlo Dos Reis & François Vuille, 2019. "Enough Metals? Resource Constraints to Supply a Fully Renewable Energy System," Resources, MDPI, vol. 8(1), pages 1-18, January.
    11. Nadine Rötzer & Mario Schmidt, 2020. "Historical, Current, and Future Energy Demand from Global Copper Production and Its Impact on Climate Change," Resources, MDPI, vol. 9(4), pages 1-31, April.
    12. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    13. Arnulf Grubler & Charlie Wilson & Nuno Bento & Benigna Boza-Kiss & Volker Krey & David L. McCollum & Narasimha D. Rao & Keywan Riahi & Joeri Rogelj & Simon Stercke & Jonathan Cullen & Stefan Frank & O, 2018. "A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies," Nature Energy, Nature, vol. 3(6), pages 515-527, June.
    14. Louis Delannoy & Pierre-Yves Longaretti & David. J. Murphy & Emmanuel Prados, 2021. "Assessing Global Long-Term EROI of Gas: A Net-Energy Perspective on the Energy Transition," Energies, MDPI, vol. 14(16), pages 1-16, August.
    15. Nadine Rötzer & Mario Schmidt, 2018. "Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified?," Resources, MDPI, vol. 7(4), pages 1-14, December.
    16. Paul E. Brockway & Anne Owen & Lina I. Brand-Correa & Lukas Hardt, 2019. "Estimation of global final-stage energy-return-on-investment for fossil fuels with comparison to renewable energy sources," Nature Energy, Nature, vol. 4(7), pages 612-621, July.
    17. Hall, Charles A.S. & Lambert, Jessica G. & Balogh, Stephen B., 2014. "EROI of different fuels and the implications for society," Energy Policy, Elsevier, vol. 64(C), pages 141-152.
    18. Vernon Topp & Leo Soames & Dean Parham & Harry Bloch, 2008. "Productivity in the Mining Industry: Measurement and Interpretation," Staff Working Papers 0807, Productivity Commission, Government of Australia.
    19. KERAMIDAS Kimon & DIAZ VAZQUEZ Ana R. & WEITZEL Matthias & VANDYCK Toon & TAMBA Marie & TCHUNG-MING Stephane & SORIA RAMIREZ Antonio & KRAUSE Jette & VAN DINGENEN Rita & SO CHAI Qimin & FU Sha & WEN X, 2020. "Global Energy and Climate Outlook 2019: Electrification for the low-carbon transition," JRC Research Reports JRC119619, Joint Research Centre.
    20. Guiomar Calvo & Gavin Mudd & Alicia Valero & Antonio Valero, 2016. "Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality?," Resources, MDPI, vol. 5(4), pages 1-14, November.
    21. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) Part 2: Methodology," Ecological Economics, Elsevier, vol. 73(C), pages 158-167.
    22. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    23. John Barrett & Steve Pye & Sam Betts-Davies & Oliver Broad & James Price & Nick Eyre & Jillian Anable & Christian Brand & George Bennett & Rachel Carr-Whitworth & Alice Garvey & Jannik Giesekam & Greg, 2022. "Energy demand reduction options for meeting national zero-emission targets in the United Kingdom," Nature Energy, Nature, vol. 7(8), pages 726-735, August.
    24. Aljoša Slameršak & Giorgos Kallis & Daniel W. O’Neill, 2022. "Energy requirements and carbon emissions for a low-carbon energy transition," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    25. Dale, M. & Krumdieck, S. & Bodger, P., 2012. "Global energy modelling — A biophysical approach (GEMBA) part 1: An overview of biophysical economics," Ecological Economics, Elsevier, vol. 73(C), pages 152-157.
    26. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    27. Lambert, Jessica G. & Hall, Charles A.S. & Balogh, Stephen & Gupta, Ajay & Arnold, Michelle, 2014. "Energy, EROI and quality of life," Energy Policy, Elsevier, vol. 64(C), pages 153-167.
    28. R. H. E. M. Koppelaar & H. Koppelaar, 2016. "The Ore Grade and Depth Influence on Copper Energy Inputs," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-16, December.
    29. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    30. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    31. Notton, Gilles & Nivet, Marie-Laure & Voyant, Cyril & Paoli, Christophe & Darras, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2018. "Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 96-105.
    32. Tilton, John E. & Crowson, Phillip C.F. & DeYoung, John H. & Eggert, Roderick G. & Ericsson, Magnus & Guzmán, Juan Ignacio & Humphreys, David & Lagos, Gustavo & Maxwell, Philip & Radetzki, Marian & Si, 2018. "Public policy and future mineral supplies," Resources Policy, Elsevier, vol. 57(C), pages 55-60.
    33. Michael Dale & Susan Krumdieck & Pat Bodger, 2011. "A Dynamic Function for Energy Return on Investment," Sustainability, MDPI, vol. 3(10), pages 1-14, October.
    34. Olivier Vidal & Hugo Le Boulzec & Baptiste Andrieu & François Verzier, 2021. "Modelling the Demand and Access of Mineral Resources in a Changing World," Sustainability, MDPI, vol. 14(1), pages 1-16, December.
    35. Tokimatsu, Koji & Höök, Mikael & McLellan, Benjamin & Wachtmeister, Henrik & Murakami, Shinsuke & Yasuoka, Rieko & Nishio, Masahiro, 2018. "Energy modeling approach to the global energy-mineral nexus: Exploring metal requirements and the well-below 2 °C target with 100 percent renewable energy," Applied Energy, Elsevier, vol. 225(C), pages 1158-1175.
    36. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    37. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    38. Laura J. Sonter & Marie C. Dade & James E. M. Watson & Rick K. Valenta, 2020. "Renewable energy production will exacerbate mining threats to biodiversity," Nature Communications, Nature, vol. 11(1), pages 1-6, December.
    39. Akpalu, Wisdom & Normanyo, Ametefee K., 2017. "Gold Mining Pollution and the Cost of Private Healthcare: The Case of Ghana," Ecological Economics, Elsevier, vol. 142(C), pages 104-112.
    40. Heun, Matthew Kuperus & de Wit, Martin, 2012. "Energy return on (energy) invested (EROI), oil prices, and energy transitions," Energy Policy, Elsevier, vol. 40(C), pages 147-158.
    41. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    42. Jason Hickel & Dylan Sullivan & Huzaifa Zoomkawala, 2021. "Plunder in the Post-Colonial Era: Quantifying Drain from the Global South Through Unequal Exchange, 1960–2018," New Political Economy, Taylor & Francis Journals, vol. 26(6), pages 1030-1047, November.
    43. Carina Harpprecht & Lauran van Oers & Stephen A. Northey & Yongxiang Yang & Bernhard Steubing, 2021. "Environmental impacts of key metals' supply and low‐carbon technologies are likely to decrease in the future," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1543-1559, December.
    44. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    45. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    46. Capellán-Pérez, Iñigo & de Castro, Carlos & Arto, Iñaki, 2017. "Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 760-782.
    47. Raugei, Marco & Leccisi, Enrica, 2016. "A comprehensive assessment of the energy performance of the full range of electricity generation technologies deployed in the United Kingdom," Energy Policy, Elsevier, vol. 90(C), pages 46-59.
    48. Mudd, Gavin M., 2010. "The Environmental sustainability of mining in Australia: key mega-trends and looming constraints," Resources Policy, Elsevier, vol. 35(2), pages 98-115, June.
    49. Paoli, Leonardo & Cullen, Jonathan, 2020. "Technical limits for energy conversion efficiency," Energy, Elsevier, vol. 192(C).
    50. Valero, Alicia & Valero, Antonio & Calvo, Guiomar & Ortego, Abel & Ascaso, Sonia & Palacios, Jose-Luis, 2018. "Global material requirements for the energy transition. An exergy flow analysis of decarbonisation pathways," Energy, Elsevier, vol. 159(C), pages 1175-1184.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    2. Jacques, Pierre & Delannoy, Louis & Andrieu, Baptiste & Yilmaz, Devrim & Jeanmart, Hervé & Godin, Antoine, 2023. "Assessing the economic consequences of an energy transition through a biophysical stock-flow consistent model," Ecological Economics, Elsevier, vol. 209(C).
    3. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    4. Emmanuel Aramendia & Paul E. Brockway & Peter G. Taylor & Jonathan B. Norman & Matthew K. Heun & Zeke Marshall, 2024. "Estimation of useful-stage energy returns on investment for fossil fuels and implications for renewable energy systems," Nature Energy, Nature, vol. 9(7), pages 803-816, July.
    5. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    6. Le Boulzec, Hugo & Delannoy, Louis & Andrieu, Baptiste & Verzier, François & Vidal, Olivier & Mathy, Sandrine, 2022. "Dynamic modeling of global fossil fuel infrastructure and materials needs: Overcoming a lack of available data," Applied Energy, Elsevier, vol. 326(C).
    7. Jackson, Andrew & Jackson, Tim, 2021. "Modelling energy transition risk: The impact of declining energy return on investment (EROI)," Ecological Economics, Elsevier, vol. 185(C).
    8. da Silva Neves, Marcus Vinicius & Szklo, Alexandre & Schaeffer, Roberto, 2023. "Fossil fuel facilities exergy return for a frontier of analysis incorporating CO2 capture: The case of a coal power plant," Energy, Elsevier, vol. 284(C).
    9. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    10. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    11. Court, Victor & Fizaine, Florian, 2017. "Long-Term Estimates of the Energy-Return-on-Investment (EROI) of Coal, Oil, and Gas Global Productions," Ecological Economics, Elsevier, vol. 138(C), pages 145-159.
    12. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    13. John W. Day & Christopher F. D’Elia & Adrian R. H. Wiegman & Jeffrey S. Rutherford & Charles A. S. Hall & Robert R. Lane & David E. Dismukes, 2018. "The Energy Pillars of Society: Perverse Interactions of Human Resource Use, the Economy, and Environmental Degradation," Biophysical Economics and Resource Quality, Springer, vol. 3(1), pages 1-16, March.
    14. Palmer, Graham, 2017. "An input-output based net-energy assessment of an electricity supply industry," Energy, Elsevier, vol. 141(C), pages 1504-1516.
    15. Marco Vittorio Ecclesia & João Santos & Paul E. Brockway & Tiago Domingos, 2022. "A Comprehensive Societal Energy Return on Investment Study of Portugal Reveals a Low but Stable Value," Energies, MDPI, vol. 15(10), pages 1-22, May.
    16. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    17. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    18. Graham Palmer, 2018. "A Biophysical Perspective of IPCC Integrated Energy Modelling," Energies, MDPI, vol. 11(4), pages 1-17, April.
    19. Victor Court & Florian Fizaine, 2014. "Energy transition towards renewables and metal depletion: an approach through the EROI concept," Post-Print hal-01411803, HAL.
    20. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.