IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06886-8.html
   My bibliography  Save this article

Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage

Author

Listed:
  • Sicong Tian

    (Macquarie University
    Tsinghua University)

  • Jianguo Jiang

    (Tsinghua University
    Tsinghua University)

  • Zuotai Zhang

    (Southern University of Science and Technology)

  • Vasilije Manovic

    (Cranfield University)

Abstract

Accounting for ~8% of annual global CO2 emissions, the iron and steel industry is expected to undertake the largest contribution to industrial decarbonisation. Despite the launch of several national and regional programmes for low-carbon steelmaking, the techno-economically feasible options are still lacking. Here, based on the carbon capture and storage (CCS) strategy, we propose a new decarbonisation concept which exploits the inherent potential of the iron and steel industry through calcium-looping lime production. We find that this concept allows steel mills to reach the 2050 decarbonisation target by 2030. Moreover, only this concept is revealed to exhibit a CO2 avoidance cost (12.5–15.8 €2010/t) lower than the projected CO2 trading price in 2020, whilst the other considered options are not expected to be economically feasible until 2030. We conclude that the proposed concept is the best available option for decarbonisation of this industrial sector in the mid- to long-term.

Suggested Citation

  • Sicong Tian & Jianguo Jiang & Zuotai Zhang & Vasilije Manovic, 2018. "Inherent potential of steelmaking to contribute to decarbonisation targets via industrial carbon capture and storage," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06886-8
    DOI: 10.1038/s41467-018-06886-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06886-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06886-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Junjun & Tan, Yu & Li, Peng & Wang, Hong & Zhu, Xun & Liao, Qiang, 2022. "Centrifugal-Granulation-Assisted thermal energy recovery towards low-carbon blast furnace slag treatment: State of the art and future challenges," Applied Energy, Elsevier, vol. 325(C).
    2. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    3. Aramendia, Emmanuel & Brockway, Paul E. & Taylor, Peter G. & Norman, Jonathan B., 2024. "Exploring the effects of mineral depletion on renewable energy technologies net energy returns," Energy, Elsevier, vol. 290(C).
    4. Yongqi Sun & Sicong Tian & Philippe Ciais & Zhenzhong Zeng & Jing Meng & Zuotai Zhang, 2022. "Decarbonising the iron and steel sector for a 2 °C target using inherent waste streams," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Zhang, Huining & Liu, Xueting & Wang, Pufan & Wang, Qiqi & Lu, Liping & Yang, Liang & Jiang, Pingguo & Liang, Yong & Liao, Chunfa, 2024. "Hydrogen-rich carbon recycling complex system establishment and comprehensive evaluation," Applied Energy, Elsevier, vol. 355(C).
    6. Mohammad Samari & Firas Ridha & Vasilije Manovic & Arturo Macchi & E. J. Anthony, 2020. "Direct capture of carbon dioxide from air via lime-based sorbents," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 25-41, January.
    7. Meng, Fan & Rong, Guoqiang & Zhao, Ruiji & Chen, Bo & Xu, Xiaoyun & Qiu, Hao & Cao, Xinde & Zhao, Ling, 2024. "Incorporating biochar into fuels system of iron and steel industry: carbon emission reduction potential and economic analysis," Applied Energy, Elsevier, vol. 356(C).
    8. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Duan, Wenjun & Han, Jiachen & Yang, Shuo & Wang, Zhimei & Yu, Qingbo & Zhan, Yaquan, 2024. "Understanding CO2 adsorption in layered double oxides synthesized by slag through kinetic and modelling techniques," Energy, Elsevier, vol. 297(C).
    10. Halliday, Cameron & Hatton, T. Alan, 2020. "The potential of molten metal oxide sorbents for carbon capture at high temperature: Conceptual design," Applied Energy, Elsevier, vol. 280(C).
    11. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Wang, Yihan & Wen, Zongguo & Xu, Mao & Kosajan, Vorada, 2024. "The carbon-energy-water nexus of the carbon capture, utilization, and storage technology deployment schemes: A case study in China's cement industry," Applied Energy, Elsevier, vol. 362(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06886-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.