IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223020376.html
   My bibliography  Save this article

Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability

Author

Listed:
  • Kılkış, Şiir

Abstract

Urban areas represent key opportunities for mitigation efforts through supporting renewable energy systems, improving urban planning, and increasing resource efficiency. This research work develops two types of urban emissions scenarios in green growth-oriented contexts with and without local ambitions. These scenarios are further coupled with improvements in existing land use efficiencies and multi-dimensional analyses. The method is applied to 45 urban areas, including 15 cities that are selected as Mission Cities in Europe. Different urban emissions scenarios indicate possibilities for reducing 135.80 ± 0.87 MtCO2eq of annual urban consumption-based emissions in 2020 by 58.72 MtCO2eq in 2030 along a 100% renewable energy pathway. Urban land use efficiency scenarios are used to determine annual carbon dioxide sequestration penalties that range between 8.25 and 14.95 MtCO2 in 2050 due to more built-up area in local biomes. Monte Carlo simulations support the analyses of urban emissions and sequestration penalties on a cumulative basis. Among illustrative scenario combinations, net cumulative urban emissions are 1725.93 MtCO2eq in the most favourable scenario that is 50.6% lower than those in the least favourable scenario. Multi-dimensional analyses based on a city index for benchmarking indicate an average improvement of 11.500 for Mission Cities with the quickest response for mitigation. The results have implications for guiding bold policy action and integrated urban planning to increase mitigation efforts for climate neutrality and sustainability.

Suggested Citation

  • Kılkış, Şiir, 2023. "Integrated urban scenarios of emissions, land use efficiency and benchmarking for climate neutrality and sustainability," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223020376
    DOI: 10.1016/j.energy.2023.128643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223020376
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019. "Radical transformation pathway towards sustainable electricity via evolutionary steps," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Gholami, M. & Torreggiani, D. & Tassinari, P. & Barbaresi, A., 2021. "Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    4. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    5. Brian C. O’Neill & Timothy R. Carter & Kristie Ebi & Paula A. Harrison & Eric Kemp-Benedict & Kasper Kok & Elmar Kriegler & Benjamin L. Preston & Keywan Riahi & Jana Sillmann & Bas J. Ruijven & Detlef, 2020. "Achievements and needs for the climate change scenario framework," Nature Climate Change, Nature, vol. 10(12), pages 1074-1084, December.
    6. Karmen Margeta & Zvonimir Glasnovic & Nataša Zabukovec Logar & Sanja Tišma & Anamarija Farkaš, 2022. "A Concept for Solving the Sustainability of Cities Worldwide," Energies, MDPI, vol. 15(2), pages 1-24, January.
    7. Giovanni Bianco & Barbara Bonvini & Stefano Bracco & Federico Delfino & Paola Laiolo & Giorgio Piazza, 2021. "Key Performance Indicators for an Energy Community Based on Sustainable Technologies," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    8. Ilbahar, Esra & Kahraman, Cengiz & Cebi, Selcuk, 2021. "Location selection for waste-to-energy plants by using fuzzy linear programming," Energy, Elsevier, vol. 234(C).
    9. Herc, Luka & Pfeifer, Antun & Duić, Neven, 2022. "Optimization of the possible pathways for gradual energy system decarbonization," Renewable Energy, Elsevier, vol. 193(C), pages 617-633.
    10. Mohammed Mahedi Hasan & Nikos Avramis & Mikaela Ranta & Andoni Saez-de-Ibarra & Mohamed El Baghdadi & Omar Hegazy, 2021. "Multi-Objective Energy Management and Charging Strategy for Electric Bus Fleets in Cities Using Various ECO Strategies," Sustainability, MDPI, vol. 13(14), pages 1-42, July.
    11. Ben Amer-Allam, Sara & Münster, Marie & Petrović, Stefan, 2017. "Scenarios for sustainable heat supply and heat savings in municipalities - The case of Helsingør, Denmark," Energy, Elsevier, vol. 137(C), pages 1252-1263.
    12. Lund, Henrik & Andersen, Anders N. & Østergaard, Poul Alberg & Mathiesen, Brian Vad & Connolly, David, 2012. "From electricity smart grids to smart energy systems – A market operation based approach and understanding," Energy, Elsevier, vol. 42(1), pages 96-102.
    13. Harald Winkler & Franck Lecocq & Hans Lofgren & Maria Virginia Vilariño & Sivan Kartha & Joana Portugal-Pereira, 2022. "Examples of shifting development pathways: lessons on how to enable broader, deeper, and faster climate action," Post-Print hal-04160777, HAL.
    14. Yuchen Yang & Kavan Javanroodi & Vahid M. Nik, 2022. "Climate Change and Renewable Energy Generation in Europe—Long-Term Impact Assessment on Solar and Wind Energy Using High-Resolution Future Climate Data and Considering Climate Uncertainties," Energies, MDPI, vol. 15(1), pages 1-19, January.
    15. David Maya-Drysdale & Louise Krog Jensen & Brian Vad Mathiesen, 2020. "Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities," Energies, MDPI, vol. 13(9), pages 1-20, May.
    16. Angel Hsu & Xuewei Wang & Jonas Tan & Wayne Toh & Nihit Goyal, 2022. "Predicting European cities’ climate mitigation performance using machine learning," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    17. Ciprian Cristea & Maria Cristea & Dan Doru Micu & Andrei Ceclan & Radu-Adrian Tîrnovan & Florica Mioara Șerban, 2022. "Tridimensional Sustainability and Feasibility Assessment of Grid-Connected Solar Photovoltaic Systems Applied for the Technical University of Cluj-Napoca," Sustainability, MDPI, vol. 14(17), pages 1-23, August.
    18. Anna Chiara Benedetti & Carlo Costantino & Riccardo Gulli & Giorgia Predari, 2022. "The Process of Digitalization of the Urban Environment for the Development of Sustainable and Circular Cities: A Case Study of Bologna, Italy," Sustainability, MDPI, vol. 14(21), pages 1-26, October.
    19. Thellufsen, J.Z. & Lund, H. & Sorknæs, P. & Østergaard, P.A. & Chang, M. & Drysdale, D. & Nielsen, S. & Djørup, S.R. & Sperling, K., 2020. "Smart energy cities in a 100% renewable energy context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    20. Mark Z. Jacobson & Anna-Katharina von Krauland & Zachary F.M. Burton & Stephen J. Coughlin & Caitlin Jaeggli & Daniel Nelli & Alexander J. H. Nelson & Yanbo Shu & Miles Smith & Chor Tan & Connery D. W, 2020. "Transitioning All Energy in 74 Metropolitan Areas, Including 30 Megacities, to 100% Clean and Renewable Wind, Water, and Sunlight (WWS)," Energies, MDPI, vol. 13(18), pages 1-40, September.
    21. Oliveira, Fabio Fava & Sousa, Duarte M. & Kotoviča, Nika, 2022. "Going beyond European emission targets: Pathways for an urban energy transition in the city of Riga," Energy, Elsevier, vol. 246(C).
    22. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    23. Chen, Xiaofei & Xiao, Jinmei & Yuan, Jiaqi & Xiao, Ziwei & Gang, Wenjie, 2021. "Application and performance analysis of 100% renewable energy systems serving low-density communities," Renewable Energy, Elsevier, vol. 176(C), pages 433-446.
    24. Aghahosseini, Arman & Solomon, A.A. & Breyer, Christian & Pregger, Thomas & Simon, Sonja & Strachan, Peter & Jäger-Waldau, Arnulf, 2023. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness," Applied Energy, Elsevier, vol. 331(C).
    25. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    26. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    27. Ondřej Slach & Vojtěch Bosák & Luděk Krtička & Alexandr Nováček & Petr Rumpel, 2019. "Urban Shrinkage and Sustainability: Assessing the Nexus between Population Density, Urban Structures and Urban Sustainability," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    28. Alexandros Paspatis & Konstantinos Fiorentzis & Yiannis Katsigiannis & Emmanuel Karapidakis, 2022. "Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    29. Ashish Gulagi & Manish Ram & Dmitrii Bogdanov & Sandeep Sarin & Theophilus Nii Odai Mensah & Christian Breyer, 2022. "The role of renewables for rapid transitioning of the power sector across states in India," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    30. Ricardo Barbosa & Manuela Almeida & Raúl Briones-Llorente & Ricardo Mateus, 2022. "Environmental Performance of a Cost-Effective Energy Renovation at the Neighbourhood Scale—The Case for Social Housing in Braga, Portugal," Sustainability, MDPI, vol. 14(4), pages 1-16, February.
    31. Jacek Oskarbski & Krystian Birr & Karol Żarski, 2021. "Bicycle Traffic Model for Sustainable Urban Mobility Planning," Energies, MDPI, vol. 14(18), pages 1-36, September.
    32. Zarrin Fatima & Tomas Vacha & Kavyashree Swamygowda & Reef Qubailat, 2022. "Getting Started with Positive Energy Districts: Experience until Now from Maia, Reykjavik, Kifissia, Kladno and Lviv," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    33. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    34. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    35. Möller, Bernd & Wiechers, Eva & Persson, Urban & Grundahl, Lars & Lund, Rasmus Søgaard & Mathiesen, Brian Vad, 2019. "Heat Roadmap Europe: Towards EU-Wide, local heat supply strategies," Energy, Elsevier, vol. 177(C), pages 554-564.
    36. Tuomo Eskelinen & Oswald Sydd & Miika Kajanus & David Fernández Gutiérrez & Miguel Mitsou & José M. Soriano Disla & Manuel Vals Sevilla & Johan Ib Hansen, 2022. "Fortifying Social Acceptance When Designing Circular Economy Business Models on Biowaste Related Products," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    37. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    38. Ram, Manish & Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Job creation during a climate compliant global energy transition across the power, heat, transport, and desalination sectors by 2050," Energy, Elsevier, vol. 238(PA).
    39. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    40. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    41. Ioan Sarbu & Matei Mirza & Daniel Muntean, 2022. "Integration of Renewable Energy Sources into Low-Temperature District Heating Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-28, September.
    42. Felix Creutzig & Leila Niamir & Xuemei Bai & Max Callaghan & Jonathan Cullen & Julio Díaz-José & Maria Figueroa & Arnulf Grubler & William F. Lamb & Adrian Leip & Eric Masanet & Érika Mata & Linus Mat, 2022. "Demand-side solutions to climate change mitigation consistent with high levels of well-being," Nature Climate Change, Nature, vol. 12(1), pages 36-46, January.
    43. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    44. Clara Lenk & Rosalie Arendt & Vanessa Bach & Matthias Finkbeiner, 2021. "Territorial-Based vs. Consumption-Based Carbon Footprint of an Urban District—A Case Study of Berlin-Wedding," Sustainability, MDPI, vol. 13(13), pages 1-18, June.
    45. Agata Ołtarzewska & Dorota Anna Krawczyk, 2021. "Simulation of the Use of Ground and Air Source Heat Pumps in Different Climatic Conditions on the Example of Selected Cities: Warsaw, Madrid, Riga, and Rome," Energies, MDPI, vol. 14(20), pages 1-11, October.
    46. Rachel Warren & Oliver Andrews & Sally Brown & Felipe J. Colón-González & Nicole Forstenhäusler & David E. H. J. Gernaat & P. Goodwin & Ian Harris & Yi He & Chris Hope & Desmond Manful & Timothy J. Os, 2022. "Quantifying risks avoided by limiting global warming to 1.5 or 2 °C above pre-industrial levels," Climatic Change, Springer, vol. 172(3), pages 1-16, June.
    47. Ziemele, Jelena & Dace, Elina, 2022. "An analytical framework for assessing the integration of the waste heat into a district heating system: Case of the city of Riga," Energy, Elsevier, vol. 254(PB).
    48. Zhu, Rui & Cheng, Cheng & Santi, Paolo & Chen, Min & Zhang, Xiaohu & Mazzarello, Martina & Wong, Man Sing & Ratti, Carlo, 2022. "Optimization of photovoltaic provision in a three-dimensional city using real-time electricity demand," Applied Energy, Elsevier, vol. 316(C).
    49. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    50. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    51. Joeri Rogelj & Alexander Popp & Katherine V. Calvin & Gunnar Luderer & Johannes Emmerling & David Gernaat & Shinichiro Fujimori & Jessica Strefler & Tomoko Hasegawa & Giacomo Marangoni & Volker Krey &, 2018. "Scenarios towards limiting global mean temperature increase below 1.5 °C," Nature Climate Change, Nature, vol. 8(4), pages 325-332, April.
    52. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kılkış, Şiir, 2024. "Urban emissions and land use efficiency scenarios for avoiding increments of global warming," Energy, Elsevier, vol. 307(C).
    2. Kılkış, Şiir, 2022. "Urban emissions and land use efficiency scenarios towards effective climate mitigation in urban systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
    6. ElSayed, Mai & Aghahosseini, Arman & Breyer, Christian, 2023. "High cost of slow energy transitions for emerging countries: On the case of Egypt's pathway options," Renewable Energy, Elsevier, vol. 210(C), pages 107-126.
    7. Zhao, Jianheng & Daigneault, Adam & Weiskittel, Aaron & Wei, Xinyuan, 2023. "Climate and socioeconomic impacts on Maine's forests under alternative future pathways," Ecological Economics, Elsevier, vol. 214(C).
    8. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    9. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," LSE Research Online Documents on Economics 125996, London School of Economics and Political Science, LSE Library.
    10. Bretschger, Lucas, 2024. "Green Road is open: Economic Pathway with a carbon price escalator," Journal of Environmental Economics and Management, Elsevier, vol. 127(C).
    11. Koch, Johannes & Leimbach, Marian, 2023. "SSP economic growth projections: Major changes of key drivers in integrated assessment modelling," Ecological Economics, Elsevier, vol. 206(C).
    12. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Wenbo, Xu & Hengzhou, Xu & Xiaoyan, Li & Hua, Qiu & Ziyao, Wang, 2024. "Ecosystem services response to future land use/cover change (LUCC) under multiple scenarios: A case study of the Beijing-Tianjin-Hebei (BTH) region, China," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
    14. Pastore, Lorenzo Mario & Lo Basso, Gianluigi & Ricciardi, Guido & de Santoli, Livio, 2023. "Smart energy systems for renewable energy communities: A comparative analysis of power-to-X strategies for improving energy self-consumption," Energy, Elsevier, vol. 280(C).
    15. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    16. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    19. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    20. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223020376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.