Author
Listed:
- Kılkış, Birol
- Kılkış, Şiir
Abstract
Addressing climate change is an urgent issue that requires effective and sustainable solutions at multiple scales from the building to the district and city scales. This study focuses on the avoidable carbon dioxide emissions responsibilities due to exergy mismatches between supply and demand at multiple scales based on the Rational Exergy Management Model. Nine key metrics for decarbonization are presented with analyses of three case studies in Glasgow, including a university campus area, and urban emissions scenarios. The existing campus district system involves 42 MW boiler capacity for heat supply and 3.35 MW electric power and heat supply with a combined heat and power system that is responsible for 80.97 kg carbon dioxide per operating hour at design conditions. The system may shift towards carbon neutrality if the combined heat and power system capacity increases to at least 27.3 MW electric power and the boiler is eventually banned. A potential expansion of the district network with solar prosumer buildings indicates that the optimum number of Exergy Stars as a new rating is four out of five when embodiments for solar prosumer buildings are considered. Urban emissions scenarios for Glasgow indicate about 20 MtCO2eq of urban consumption-based emissions in 2020 that are analyzed up to 2030 and 2050 under different decarbonization scenarios. Remaining urban emissions are linked to inefficiencies where exergy mismatches cause emissions responsibilities in the energy system. In comparison to the decarbonization index in the urban emissions scenarios for Glasgow, the increased exergy match at 0.87 is closest to its 2045-year value in the renewable energy based green-growth scenario. The results are useful for guiding other urban areas to embark on an effective approach for mitigation and bring society to a better balance with the planet. Districts and cities can utilize these metrics to upscale climate mitigation and minimize emissions more rapidly.
Suggested Citation
Kılkış, Birol & Kılkış, Şiir, 2024.
"Rational Exergy Management Model based metrics for minimum carbon dioxide emissions and decarbonization in Glasgow,"
Energy, Elsevier, vol. 310(C).
Handle:
RePEc:eee:energy:v:310:y:2024:i:c:s036054422402396x
DOI: 10.1016/j.energy.2024.132622
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422402396x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.