Author
Listed:
- Dmitrii Bogdanov
(Lappeenranta University of Technology)
- Javier Farfan
(Lappeenranta University of Technology)
- Kristina Sadovskaia
(Lappeenranta University of Technology)
- Arman Aghahosseini
(Lappeenranta University of Technology)
- Michael Child
(Lappeenranta University of Technology)
- Ashish Gulagi
(Lappeenranta University of Technology)
- Ayobami Solomon Oyewo
(Lappeenranta University of Technology)
- Larissa Souza Noel Simas Barbosa
(University of São Paulo)
- Christian Breyer
(Lappeenranta University of Technology)
Abstract
A transition towards long-term sustainability in global energy systems based on renewable energy resources can mitigate several growing threats to human society simultaneously: greenhouse gas emissions, human-induced climate deviations, and the exceeding of critical planetary boundaries. However, the optimal structure of future systems and potential transition pathways are still open questions. This research describes a global, 100% renewable electricity system, which can be achieved by 2050, and the steps required to enable a realistic transition that prevents societal disruption. Modelling results show that a carbon neutral electricity system can be built in all regions of the world in an economically feasible manner. This radical transformation will require steady but evolutionary changes for the next 35 years, and will lead to sustainable and affordable power supply globally.
Suggested Citation
Dmitrii Bogdanov & Javier Farfan & Kristina Sadovskaia & Arman Aghahosseini & Michael Child & Ashish Gulagi & Ayobami Solomon Oyewo & Larissa Souza Noel Simas Barbosa & Christian Breyer, 2019.
"Radical transformation pathway towards sustainable electricity via evolutionary steps,"
Nature Communications, Nature, vol. 10(1), pages 1-16, December.
Handle:
RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08855-1
DOI: 10.1038/s41467-019-08855-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08855-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.