IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v284y2023ics0360544223026476.html
   My bibliography  Save this article

Dynamic response of a dual-opposed free-piston Stirling generator

Author

Listed:
  • Xiao, Lei
  • Wu, Zhanghua
  • Zhu, Qilu
  • Jia, Zilong
  • Zhao, Dong
  • Hu, Jianying
  • Zhu, Shunmin
  • Luo, Ercang

Abstract

As a type of distributed power generation device, free-piston Stirling generator (FPSG) is characterised by compactness, high efficiency, and long life. This work devotes to exploring the dynamic response of a low-vibration dual-opposed FPSG by employing the newly-developed time-domain acoustic-electrical analogy (TDAEA) method. Transient evolutions of self-sustained oscillations are first exhibited, which contains the start-up and steady stages. An exploration on steady-state performance is then conducted, which shows the maximum thermal-to-electric efficiency of 46.6% with an electric power of 3.92 kW, implying its enormous potential in distributed power generation for low-vibration applications due to its dual-opposed configuration. Dynamic response with jump in external load and gradual variation in heating temperature are subsequently investigated in detail. The results indicate that an acute drop in electric resistance leads to an oscillation attenuation, particularly, a short circuit results in an emergency shutdown. With the heating temperature declining gradually, the oscillation attenuates and even stops. Based on these results, some general operating regulation principles for FPSGs are further concluded to avoid the cylinder striking as well as frequent start and stop. This study gives a deeper understanding on the dynamic characteristics of FPSGs, as well as broadens the usage of the TDAEA method.

Suggested Citation

  • Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
  • Handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026476
    DOI: 10.1016/j.energy.2023.129253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223026476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).
    2. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    3. Ye, Wenlian & Zhang, Ting & Wang, Xiaojun & Liu, Yingwen & Chen, Pengfan, 2020. "Parametric study of gamma-type free piston stirling engine using nonlinear thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 211(C).
    4. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    5. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    6. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
    7. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    8. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    10. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Lei & Luo, Kaiqi & Zhao, Dong & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "A highly efficient heat-driven thermoacoustic cooling system: Detailed study," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    2. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    3. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    4. Xiao, Lei & Luo, Kaiqi & Zhao, Dong & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "A highly efficient heat-driven thermoacoustic cooling system: Detailed study," Energy, Elsevier, vol. 293(C).
    5. Yu, Minjie & Xu, Lei & Cui, Haichuan & Liu, Zhichun & Liu, Wei, 2024. "Characteristics and potential of a novel inclined-flow stirling regenerator constructed by sinusoidal corrugated channels," Energy, Elsevier, vol. 288(C).
    6. Jiang, Chao & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang & Li, Ke, 2022. "Numerical and experimental investigations on a regenerative static thermomagnetic generator for low-grade thermal energy recovery," Applied Energy, Elsevier, vol. 311(C).
    7. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    8. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    9. Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
    10. Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
    11. Blanc, Nathan & Laufer, Michael & Frankel, Steven & Ramon, Guy Z., 2024. "High-fidelity numerical simulations of a standing-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 360(C).
    12. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    13. Pablo Jimenez Zabalaga & Evelyn Cardozo & Luis A. Choque Campero & Joseph Adhemar Araoz Ramos, 2020. "Performance Analysis of a Stirling Engine Hybrid Power System," Energies, MDPI, vol. 13(4), pages 1-38, February.
    14. Elhawary, M.A. & Ibrahim, Abdelmaged H. & Sabry, Ashraf S. & Abdel-Rahman, Ehab, 2020. "Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 414-426.
    15. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    16. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    17. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    18. Ahmed Hamood & Artur J. Jaworski & Xiaoan Mao, 2019. "Development and Assessment of Two-Stage Thermoacoustic Electricity Generator," Energies, MDPI, vol. 12(9), pages 1-18, May.
    19. Chen, Wen-Lih & Sirisha, Vadlakonda & Yu, Chi-Yuan & Wang, Yan-Ru & Dai, Ming-Wei & Lasek, Janusz & Li, Yueh-Heng, 2024. "Design and optimization of a combined heat and power system with a fluidized-bed combustor and stirling engine," Energy, Elsevier, vol. 293(C).
    20. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:284:y:2023:i:c:s0360544223026476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.