A standing-wave, phase-change thermoacoustic engine: Experiments and model projections
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124665
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
- Tsuda, Kenichiro & Ueda, Yuki, 2017. "Critical temperature of traveling- and standing-wave thermoacoustic engines using a wet regenerator," Applied Energy, Elsevier, vol. 196(C), pages 62-67.
- Meir, Avishai & Offner, Avshalom & Ramon, Guy Z., 2018. "Low-temperature energy conversion using a phase-change acoustic heat engine," Applied Energy, Elsevier, vol. 231(C), pages 372-379.
- Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
- Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
- Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).
- S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
- Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Guo, Lixian & Zhao, Dan & Cheng, Li & Dong, Xu & Xu, Jingyuan, 2024. "Enhancing energy conversion performances in standing-wave thermoacoustic engine with externally forcing periodic oscillations," Energy, Elsevier, vol. 292(C).
- Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
- Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
- Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
- Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
- Hu, Yiwei & Luo, Kaiqi & Wu, Zhanghua & Luo, Ercang, 2024. "Efficiency enhancement in a heat-driven single-unit thermoacoustic refrigeration system," Applied Energy, Elsevier, vol. 369(C).
- Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
- Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
- Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
- Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
- Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
- Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
- Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
- Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
- Meir, Avishai & Offner, Avshalom & Ramon, Guy Z., 2018. "Low-temperature energy conversion using a phase-change acoustic heat engine," Applied Energy, Elsevier, vol. 231(C), pages 372-379.
- Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
- Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
- Napolitano, Marialuisa & Romano, Rosario & Dragonetti, Raffaele, 2017. "Open-cell foams for thermoacoustic applications," Energy, Elsevier, vol. 138(C), pages 147-156.
- Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
- Blanc, Nathan & Laufer, Michael & Frankel, Steven & Ramon, Guy Z., 2024. "High-fidelity numerical simulations of a standing-wave thermoacoustic engine," Applied Energy, Elsevier, vol. 360(C).
More about this item
Keywords
Thermoacoustic engine; Wet thermoacoustics; Phase change; Wet stack; Low-grade heat recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222015687. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.