IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v305y2022ics0306261921012174.html
   My bibliography  Save this article

Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler

Author

Listed:
  • Xu, Jingyuan
  • Hu, Jianying
  • Luo, Ercang
  • Hu, Jiangfeng
  • Zhang, Limin
  • Hochgreb, Simone

Abstract

This work investigates a novel heat-driven multi-stage thermoacoustic cooler that can satisfy cooling requirements in the applications of natural gas liquefaction and high-temperature superconductivity. The proposed system consists of a compressor, multiple thermoacoustic units (engines and coolers) coupled by piston-cylinder assemblies. The acoustic power input by the compressor is successively multiplied in the thermoacoustic engine units, and the amplified acoustic power is then consumed to produce cooling power in the thermoacoustic cooler units. The proposed system overcomes the limitations of the traditional thermoacoustic systems owing to high efficiency, compact size, and ease of control. Analyses are first performed to explore the influence of the number of stages. The design method of the pistons is presented based on acoustic impedance matching principle.Based on the optimized system, simulations are then conducted to investigate the axial distribution of the key parameters, which can explain the reason for improved thermodynamic performance. At heating and cooling temperatures of 873 K and 130 K, the system achieves a cooling power of 2.1 kW and a thermal-to-cooling relative Carnot efficiency of 23%. This represents significant increases by over 60% in efficiency and 80% in cooling capacity when compared to existing systems. Simulations further demonstrate how controlling the input acoustic power and frequency via the compressor enables control of the system under various conditions. Further discussions are made considering a potential combined cooling and power system, indicating an overall thermal-cooling-electricity efficiency of 34% without any external electric power required for the compressor.

Suggested Citation

  • Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Hu, Jiangfeng & Zhang, Limin & Hochgreb, Simone, 2022. "Numerical study on a heat-driven piston-coupled multi-stage thermoacoustic-Stirling cooler," Applied Energy, Elsevier, vol. 305(C).
  • Handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012174
    DOI: 10.1016/j.apenergy.2021.117904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921012174
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Longyi & Wu, Mei & Sun, Xiao & Gan, Zhihua, 2016. "A cascade pulse tube cooler capable of energy recovery," Applied Energy, Elsevier, vol. 164(C), pages 572-578.
    2. Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.
    3. Xu, Jingyuan & Hu, Jianying & Zhang, Limin & Dai, Wei & Luo, Ercang, 2015. "Effect of coupling position on a looped three-stage thermoacoustically-driven pulse tube cryocooler," Energy, Elsevier, vol. 93(P1), pages 994-998.
    4. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    5. Langdon-Arms, Samuel & Gschwendtner, Michael & Neumaier, Martin, 2018. "A novel solar-powered liquid piston Stirling refrigerator," Applied Energy, Elsevier, vol. 229(C), pages 603-613.
    6. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    7. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    8. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    9. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).
    10. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
    11. Qiu, Songgang & Gao, Yuan & Rinker, Garrett & Yanaga, Koji, 2019. "Development of an advanced free-piston Stirling engine for micro combined heating and power application," Applied Energy, Elsevier, vol. 235(C), pages 987-1000.
    12. Wu, Zhanghua & Chen, Yanyan & Dai, Wei & Luo, Ercang & Li, Donghui, 2015. "Investigation on the thermoacoustic conversion characteristic of regenerator," Applied Energy, Elsevier, vol. 152(C), pages 156-161.
    13. S. Backhaus & G. W. Swift, 1999. "A thermoacoustic Stirling heat engine," Nature, Nature, vol. 399(6734), pages 335-338, May.
    14. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    15. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Wang, X.T. & Dai, W., 2013. "A double-acting thermoacoustic cryocooler for high temperature superconducting electric power grids," Applied Energy, Elsevier, vol. 112(C), pages 1166-1170.
    16. Tomita, Masaru & Fukumoto, Yusuke & Ishihara, Atsushi & Suzuki, Kenji & Akasaka, Tomoyuki & Kobayashi, Yusuke & Onji, Taiki & Arai, Yuki, 2020. "Energy analysis of superconducting power transmission installed on the commercial railway line," Energy, Elsevier, vol. 209(C).
    17. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    18. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    19. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "A transient one-dimensional numerical model for kinetic Stirling engine," Applied Energy, Elsevier, vol. 183(C), pages 775-790.
    20. Xu, Jingyuan & Zhang, Limin & Hu, Jianying & Wu, Zhanghua & Bi, Tianjiao & Dai, Wei & Luo, Ercang, 2016. "An efficient looped multiple-stage thermoacoustically-driven cryocooler for liquefaction and recondensation of natural gas," Energy, Elsevier, vol. 101(C), pages 427-433.
    21. Hartikainen, Teemu & Lehtonen, Jorma & Mikkonen, Risto, 2004. "Reduction of greenhouse-gas emissions by utilization of superconductivity in electric-power generation," Applied Energy, Elsevier, vol. 78(2), pages 151-158, June.
    22. Chen, Jialing & Li, Xian & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system," Applied Energy, Elsevier, vol. 281(C).
    23. Xu, Jingyuan & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2016. "A looped three-stage cascade traveling-wave thermoacoustically-driven cryocooler," Energy, Elsevier, vol. 112(C), pages 804-809.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Haojie & Yu, Guoyao & Dai, Wei & Zhang, Limin & Luo, Ercang, 2022. "Dynamic and thermodynamic characterization of a resonance tube-coupled free-piston Stirling engine-based combined cooling and power system," Applied Energy, Elsevier, vol. 322(C).
    2. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
    3. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    4. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    5. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    6. Guo, Xinru & Guo, Yumin & Wang, Jiangfeng & Zhang, Guolutiao & Wang, Ziyan & Wu, Weifeng & Wang, Shunsen & Zhao, Pan, 2023. "Modeling and thermodynamic analysis of a novel combined cooling and power system composed of alkali metal thermal electric converter and looped multistage thermoacoustically-driven refrigerator," Energy, Elsevier, vol. 263(PD).
    7. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2021. "A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery," Energy, Elsevier, vol. 227(C).
    2. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    3. Xu, Jingyuan & Luo, Ercang & Hochgreb, Simone, 2020. "Study on a heat-driven thermoacoustic refrigerator for low-grade heat recovery," Applied Energy, Elsevier, vol. 271(C).
    4. Xu, Jingyuan & Hu, Jianying & Sun, Yanlei & Wang, Huizhi & Wu, Zhanghua & Hu, Jiangfeng & Hochgreb, Simone & Luo, Ercang, 2020. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part Ⅱ: Experimental study and comparison," Energy, Elsevier, vol. 207(C).
    5. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    6. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    7. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2022. "A standing-wave, phase-change thermoacoustic engine: Experiments and model projections," Energy, Elsevier, vol. 258(C).
    8. Wang, Xin & Xu, Jingyuan & Wu, Zhanghua & Luo, Ercang, 2022. "A thermoacoustic refrigerator with multiple-bypass expansion cooling configuration for natural gas liquefaction," Applied Energy, Elsevier, vol. 313(C).
    9. Hu, Yiwei & Xu, Jingyuan & Zhao, Dan & Yang, Rui & Hu, Jianying & Luo, Ercang, 2024. "Analysis on a single-stage direct-coupled thermoacoustic refrigerator driven by low/medium-grade heat," Applied Energy, Elsevier, vol. 361(C).
    10. Hu, J.Y. & Luo, E.C. & Dai, W. & Zhang, L.M., 2017. "Parameter sensitivity analysis of duplex Stirling coolers," Applied Energy, Elsevier, vol. 190(C), pages 1039-1046.
    11. Xu, Jingyuan & Hu, Jianying & Luo, Ercang & Zhang, Limin & Dai, Wei, 2019. "A cascade-looped thermoacoustic driven cryocooler with different-diameter resonance tubes. Part I: Theoretical analysis of thermodynamic performance and characteristics," Energy, Elsevier, vol. 181(C), pages 943-953.
    12. Hu, J.Y. & Luo, E.C. & Zhang, L.M. & Chen, Y.Y. & Wu, Z.H. & Gao, B., 2018. "Analysis of a displacer-coupled multi-stage thermoacoustic-Stirling engine," Energy, Elsevier, vol. 145(C), pages 507-514.
    13. Hu, Yiwei & Luo, Kaiqi & Zhao, Dan & Chi, Jiaxin & Chen, Geng & Chen, Yuanhang & Luo, Ercang & Xu, Jingyuan, 2024. "Thermoacoustic micro-CHP system for low-grade thermal energy utilization in residential buildings," Energy, Elsevier, vol. 298(C).
    14. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    15. Wang, Kai & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism," Applied Energy, Elsevier, vol. 171(C), pages 172-183.
    16. Chen, Geng & Wang, Yufan & Tang, Lihua & Wang, Kai & Yu, Zhibin, 2020. "Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine," Applied Energy, Elsevier, vol. 276(C).
    17. Jiang, Zhijie & Xu, Jingyuan & Yu, Guoyao & Yang, Rui & Wu, Zhanghua & Hu, Jianying & Zhang, Limin & Luo, Ercang, 2023. "A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery," Applied Energy, Elsevier, vol. 329(C).
    18. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    19. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).
    20. Xu, Jingyuan & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2017. "Theoretical analysis of two coupling modes of a 300-Hz three-stage thermoacoustically driven cryocooler system at liquid nitrogen temperature range," Applied Energy, Elsevier, vol. 185(P2), pages 2134-2141.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:305:y:2022:i:c:s0306261921012174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.