IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922000666.html
   My bibliography  Save this article

Numerical and experimental investigations on a regenerative static thermomagnetic generator for low-grade thermal energy recovery

Author

Listed:
  • Jiang, Chao
  • Zhu, Shunmin
  • Yu, Guoyao
  • Luo, Ercang
  • Li, Ke

Abstract

Harvesting low-grade thermal energy from waste heat and natural resources is an extremely promising method to partially substitute depleting fossil fuels. As one of the alternative technologies, static thermomagnetic power generation is subjected to inefficiency due to the non-regenerative power cycle. To give an insight to what degree can current technology realize regeneration and guide the direction of future research on thermomagnetic power generation, a regenerative static thermomagnetic generator was designed, modeled, constructed, and tested for the first time in this study, several parameters were systematically optimized as well. Firstly, the working principle of the studied static thermomagnetic generator and the importance of regeneration was reviewed. Then both numerical and experimental methods were used to evaluate the dependence of power output and load voltage on mean temperature, temperature difference, working frequency, and load resistance. Numerical simulation indicated that the actual regenerative effect can improve the thermal efficiency of the static thermomagnetic generator by a factor of 1 at a frequency of 0.2 Hz. In experiments, a maximum electric power of 25 nW was extracted from the static thermomagnetic generator at a frequency of 0.4 Hz. Significant discrepancies between the numerical and experimental results have been identified and explained in detail. This work also shows that the performance of the actual regenerative cycle is far from that of an ideal regenerative cycle.

Suggested Citation

  • Jiang, Chao & Zhu, Shunmin & Yu, Guoyao & Luo, Ercang & Li, Ke, 2022. "Numerical and experimental investigations on a regenerative static thermomagnetic generator for low-grade thermal energy recovery," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000666
    DOI: 10.1016/j.apenergy.2022.118585
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000666
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    2. Anja Waske & Daniel Dzekan & Kai Sellschopp & Dietmar Berger & Alexander Stork & Kornelius Nielsch & Sebastian Fähler, 2019. "Energy harvesting near room temperature using a thermomagnetic generator with a pretzel-like magnetic flux topology," Nature Energy, Nature, vol. 4(1), pages 68-74, January.
    3. Deepak, K. & Pattanaik, M.S. & Ramanujan, R.V., 2019. "Figure of merit and improved performance of a hybrid thermomagnetic oscillator," Applied Energy, Elsevier, vol. 256(C).
    4. Kishore, Ravi Anant & Priya, Shashank, 2018. "A review on design and performance of thermomagnetic devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 33-44.
    5. Deepak, K. & Varma, V.B. & Prasanna, G. & Ramanujan, R.V., 2019. "Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity," Applied Energy, Elsevier, vol. 233, pages 312-320.
    6. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    7. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    8. Forman, Clemens & Muritala, Ibrahim Kolawole & Pardemann, Robert & Meyer, Bernd, 2016. "Estimating the global waste heat potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1568-1579.
    9. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    10. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    11. Hamid Elsheikh, Mohamed & Shnawah, Dhafer Abdulameer & Sabri, Mohd Faizul Mohd & Said, Suhana Binti Mohd & Haji Hassan, Masjuki & Ali Bashir, Mohamed Bashir & Mohamad, Mahazani, 2014. "A review on thermoelectric renewable energy: Principle parameters that affect their performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 337-355.
    12. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Chao & Wang, Tong & Zhu, Shunmin & Yu, Guoyao & Wu, Zhanghua & Luo, Ercang, 2023. "A method to optimize the external magnetic field to suppress the end current in liquid metal magnetohydrodynamic generators," Energy, Elsevier, vol. 282(C).
    2. Jonathan Hey & Maheswar Repaka & Tao Li & Jun Liang Tan, 2022. "Design Optimization of a Rotary Thermomagnetic Motor for More Efficient Heat Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Haodong & Ma, Zhihui & Liu, Xianliang & Qiao, Kaiming & Xie, Longlong & Li, Zhenxing & Shen, Jun & Dai, Wei & Ou, Zhiqiang & Yibole, Hargen & Tegus, Ojiyed & Taskaev, Sergey V. & Chu, Ke & Long,, 2022. "Evaluation of thermomagnetic generation performance of classic magnetocaloric materials for harvesting low-grade waste heat," Applied Energy, Elsevier, vol. 306(PA).
    2. Xianliang Liu & Haodong Chen & Jianyi Huang & Kaiming Qiao & Ziyuan Yu & Longlong Xie & Raju V. Ramanujan & Fengxia Hu & Ke Chu & Yi Long & Hu Zhang, 2023. "High-performance thermomagnetic generator controlled by a magnetocaloric switch," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Yang, Rui & Wang, Junxiang & Luo, Ercang, 2023. "Revisiting the evaporative Stirling engine: The mechanism and a case study via thermoacoustic theory," Energy, Elsevier, vol. 273(C).
    4. Yang, Rui & Meir, Avishai & Ramon, Guy Z., 2020. "Theoretical performance characteristics of a travelling-wave phase-change thermoacoustic engine for low-grade heat recovery," Applied Energy, Elsevier, vol. 261(C).
    5. Jonathan Hey & Maheswar Repaka & Tao Li & Jun Liang Tan, 2022. "Design Optimization of a Rotary Thermomagnetic Motor for More Efficient Heat Energy Harvesting," Energies, MDPI, vol. 15(17), pages 1-22, August.
    6. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    7. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    8. Qian, Suxin & Yao, Sijia & Wang, Yao & Yuan, Lifen & Yu, Jianlin, 2022. "Harvesting low-grade heat by coupling regenerative shape-memory actuator and piezoelectric generator," Applied Energy, Elsevier, vol. 322(C).
    9. Kim, Deok Han & Park, Byung Ho & Kwon, Kilsung & Li, Longnan & Kim, Daejoong, 2017. "Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery," Applied Energy, Elsevier, vol. 189(C), pages 201-210.
    10. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    11. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    12. Aristov, Yu.I., 2021. "Adsorptive conversion of ultralow-temperature heat: Thermodynamic issues," Energy, Elsevier, vol. 236(C).
    13. Zhu, Shunmin & Yu, Guoyao & Ma, Ying & Cheng, Yangbin & Wang, Yalei & Yu, Shaofei & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2019. "A free-piston Stirling generator integrated with a parabolic trough collector for thermal-to-electric conversion of solar energy," Applied Energy, Elsevier, vol. 242(C), pages 1248-1258.
    14. Masoumi, A.P. & Tavakolpour-Saleh, A.R., 2020. "Experimental assessment of damping and heat transfer coefficients in an active free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 195(C).
    15. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    16. Chen, Ruihua & Deng, Shuai & Xu, Weicong & Zhao, Li, 2020. "A graphic analysis method of electrochemical systems for low-grade heat harvesting from a perspective of thermodynamic cycles," Energy, Elsevier, vol. 191(C).
    17. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    18. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    19. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    20. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.