IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v159y2020icp414-426.html
   My bibliography  Save this article

Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion

Author

Listed:
  • Elhawary, M.A.
  • Ibrahim, Abdelmaged H.
  • Sabry, Ashraf S.
  • Abdel-Rahman, Ehab

Abstract

Axial impulse turbines have been utilized for oscillating water column wave-energy conversion because of their wide operating range without stalling point. Previous studies in the oscillating-flow environment gave no information on the performance of these turbines at high frequencies. This study extends the use of these turbines to conditions close to those encountered in thermoacoustic power generators, which require the turbine to operate at a large frequency in a closed duct. The use of bi-directional turbines as acoustic-to-mechanical power converters brings several advantages, such as their low acoustic impedance, in comparison with linear alternators, which facilitates integration with thermoacoustic engines. In the study, a variable-frequency test rig is set up using atmospheric air. Then, the performance of the bi-directional impulse turbine is studied at different rotor inlet/exit angle, rotor space-to-chord ratio, stator space-to-chord ratio, stator exit angle, and tip clearance. The dependence of the conversion efficiency on flow coefficient is reported over a set of constant input gas parcel velocities. The study also introduces an impedance segment to simulate the turbine on Delta-EC. The peak efficiency of the improved case is found to be 35.2% at a flow coefficient of 0.22, resulting an improvement of 38% over the reference case.

Suggested Citation

  • Elhawary, M.A. & Ibrahim, Abdelmaged H. & Sabry, Ashraf S. & Abdel-Rahman, Ehab, 2020. "Experimental study of a small scale bi-directional axial impulse turbine for acoustic-to-mechanical power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 414-426.
  • Handle: RePEc:eee:renene:v:159:y:2020:i:c:p:414-426
    DOI: 10.1016/j.renene.2020.05.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120308673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Zhibin & Jaworski, Artur J. & Backhaus, Scott, 2012. "Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy," Applied Energy, Elsevier, vol. 99(C), pages 135-145.
    2. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    3. Sun, D.M. & Wang, K. & Zhang, X.J. & Guo, Y.N. & Xu, Y. & Qiu, L.M., 2013. "A traveling-wave thermoacoustic electric generator with a variable electric R-C load," Applied Energy, Elsevier, vol. 106(C), pages 377-382.
    4. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    5. Liu, Zhen & Cui, Ying & Li, Ming & Shi, Hongda, 2017. "Steady state performance of an axial impulse turbine for oscillating water column wave energy converters," Energy, Elsevier, vol. 141(C), pages 1-10.
    6. Abdoulla-Latiwish, Kalid O.A. & Mao, Xiaoan & Jaworski, Artur J., 2017. "Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities," Energy, Elsevier, vol. 134(C), pages 1107-1120.
    7. Setoguchi, T & Santhakumar, S & Maeda, H & Takao, M & Kaneko, K, 2001. "A review of impulse turbines for wave energy conversion," Renewable Energy, Elsevier, vol. 23(2), pages 261-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Kan & Wang, Hanwei & Qi, Jianhui & Sun, Junliang & Luo, Kai, 2022. "Aerodynamic design and experimental validation of high pressure ratio partial admission axial impulse turbines for unmanned underwater vehicles," Energy, Elsevier, vol. 239(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    2. Kisha, Wigdan & Riley, Paul & McKechnie, Jon & Hann, David, 2021. "Asymmetrically heated multi-stage travelling-wave thermoacoustic electricity generator," Energy, Elsevier, vol. 235(C).
    3. Hamood, Ahmed & Jaworski, Artur J. & Mao, Xiaoan & Simpson, Kevin, 2018. "Design and construction of a two-stage thermoacoustic electricity generator with push-pull linear alternator," Energy, Elsevier, vol. 144(C), pages 61-72.
    4. Hsu, Shu-Han & Liao, Zhe-Yi, 2024. "Impedance matching for investigating operational conditions in thermoacoustic Stirling fluidyne," Applied Energy, Elsevier, vol. 374(C).
    5. Bi, Tianjiao & Wu, Zhanghua & Chen, Wei & Zhang, Limin & Luo, Ercang & Zhang, Bin, 2022. "Numerical and experimental research on a high-power 4-stage looped travelling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 239(PB).
    6. Guo, Peng & Zhang, Yongliang & Chen, Wenchuang, 2023. "Numerical analysis on a self-rectifying impulse turbine with U-shaped duct for oscillating water column wave energy conversion," Energy, Elsevier, vol. 274(C).
    7. Bi, Tianjiao & Wu, Zhanghua & Zhang, Limin & Yu, Guoyao & Luo, Ercang & Dai, Wei, 2017. "Development of a 5kW traveling-wave thermoacoustic electric generator," Applied Energy, Elsevier, vol. 185(P2), pages 1355-1361.
    8. Li, Xinyan & Huang, Yong & Zhao, Dan & Yang, Wenming & Yang, Xinglin & Wen, Huabing, 2017. "Stability study of a nonlinear thermoacoustic combustor: Effects of time delay, acoustic loss and combustion-flow interaction index," Applied Energy, Elsevier, vol. 199(C), pages 217-224.
    9. Wang, Kai & Sanders, Seth R. & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2016. "Stirling cycle engines for recovering low and moderate temperature heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 89-108.
    10. Kang, Huifang & Cheng, Peng & Yu, Zhibin & Zheng, Hongfei, 2015. "A two-stage traveling-wave thermoacoustic electric generator with loudspeakers as alternators," Applied Energy, Elsevier, vol. 137(C), pages 9-17.
    11. Yongyao Luo & Alexandre Presas & Zhengwei Wang, 2019. "Numerical Analysis of the Influence of Design Parameters on the Efficiency of an OWC Axial Impulse Turbine for Wave Energy Conversion," Energies, MDPI, vol. 12(5), pages 1-12, March.
    12. Callanan, J. & Nouh, M., 2019. "Optimal thermoacoustic energy extraction via temporal phase control and traveling wave generation," Applied Energy, Elsevier, vol. 241(C), pages 599-612.
    13. Jin, Tao & Huang, Jiale & Feng, Ye & Yang, Rui & Tang, Ke & Radebaugh, Ray, 2015. "Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components," Energy, Elsevier, vol. 93(P1), pages 828-853.
    14. Steiner, Thomas W. & Archibald, Geoffrey D.S., 2014. "A high pressure and high frequency diaphragm engine: Comparison of measured results with thermoacoustic predictions," Applied Energy, Elsevier, vol. 114(C), pages 709-716.
    15. Liu, Zhen & Cui, Ying & Xu, Chuanli & Sun, Lixin & Li, Ming & Jin, Jiyuan, 2019. "Experimental and numerical studies on an OWC axial-flow impulse turbine in reciprocating air flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    16. Xiao, Lei & Luo, Kaiqi & Zhao, Dan & Chen, Geng & Bi, Tianjiao & Xu, Jingyuan & Luo, Ercang, 2023. "Time-domain acoustic-electrical analogy investigation on a high-power traveling-wave thermoacoustic electric generator," Energy, Elsevier, vol. 263(PE).
    17. Al-Kayiem, Ali & Yu, Zhibin, 2016. "Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe," Energy, Elsevier, vol. 112(C), pages 111-120.
    18. Wu, Zhanghua & Yu, Guoyao & Zhang, Limin & Dai, Wei & Luo, Ercang, 2014. "Development of a 3kW double-acting thermoacoustic Stirling electric generator," Applied Energy, Elsevier, vol. 136(C), pages 866-872.
    19. Jin, Tao & Yang, Rui & Wang, Yi & Liu, Yuanliang & Feng, Ye, 2016. "Phase adjustment analysis and performance of a looped thermoacoustic prime mover with compliance/resistance tube," Applied Energy, Elsevier, vol. 183(C), pages 290-298.
    20. Zhu, Shunmin & Wang, Tong & Jiang, Chao & Wu, Zhanghua & Yu, Guoyao & Hu, Jianying & Markides, Christos N. & Luo, Ercang, 2023. "Experimental and numerical study of a liquid metal magnetohydrodynamic generator for thermoacoustic power generation," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:159:y:2020:i:c:p:414-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.