IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224003827.html
   My bibliography  Save this article

A highly efficient heat-driven thermoacoustic cooling system: Detailed study

Author

Listed:
  • Xiao, Lei
  • Luo, Kaiqi
  • Zhao, Dong
  • Wu, Zhanghua
  • Xu, Jingyuan
  • Luo, Ercang

Abstract

Developing sustainable cooling technologies is crucial for modern life. The heat-driven thermoacoustic refrigerator (HDTR) is an emerging cooling technology with superiorities of eco-friendly working substances and no mechanical moving components, albeit with a relatively low efficiency currently. We propose a novel HDTR with a bypass design, which realizes good matching in acoustic power between the engine and cooler units, thus significantly enhancing the efficiency. The principle of acoustic power matching is initially unveiled, revealing the efficiency bottleneck in traditional HDTRs, and elucidating the critical role of bypass for efficiency improvement. A comprehensive numerical exploration on system's transient characteristics and steady-state performance is then performed. Subsequently, a preliminary experimental investigation is conducted. Under the standard air-conditioning cooling conditions, an experimental COP of 1.12 with a cooling power of 2.53 kW are achieved. Under similar refrigeration conditions, this COP is 2.7 times that of the reported highest value for existing HDTRs, surpassing single-effect absorption refrigerators, even comparable to double-effect absorption refrigerators, indicating substantial potential of the proposed system in commercial heat-driven refrigeration. This study introduces an effective approach to improve the COP of HDTRs, providing a deeper insight into the efficient energy conversion mechanism within these systems.

Suggested Citation

  • Xiao, Lei & Luo, Kaiqi & Zhao, Dong & Wu, Zhanghua & Xu, Jingyuan & Luo, Ercang, 2024. "A highly efficient heat-driven thermoacoustic cooling system: Detailed study," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003827
    DOI: 10.1016/j.energy.2024.130610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003827
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torrella, E. & Sánchez, D. & Cabello, R. & Larumbe, J.A. & Llopis, R., 2009. "On-site real-time evaluation of an air-conditioning direct-fired double-effect absorption chiller," Applied Energy, Elsevier, vol. 86(6), pages 968-975, June.
    2. Remco Erp & Reza Soleimanzadeh & Luca Nela & Georgios Kampitsis & Elison Matioli, 2020. "Co-designing electronics with microfluidics for more sustainable cooling," Nature, Nature, vol. 585(7824), pages 211-216, September.
    3. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
    4. Xiao, Lei & Luo, Kaiqi & Chi, Jiaxin & Chen, Geng & Wu, Zhanghua & Luo, Ercang & Xu, Jingyuan, 2023. "Study on a direct-coupling thermoacoustic refrigerator using time-domain acoustic-electrical analogy method," Applied Energy, Elsevier, vol. 339(C).
    5. Izquierdo, M. & Marcos, J.D. & Palacios, M.E. & González-Gil, A., 2012. "Experimental evaluation of a low-power direct air-cooled double-effect LiBr–H2O absorption prototype," Energy, Elsevier, vol. 37(1), pages 737-748.
    6. Xiao, Lei & Luo, Kaiqi & Hu, Jianying & Jia, Zilong & Chen, Geng & Xu, Jingyuan & Luo, Ercang, 2023. "Transient and steady performance analysis of a free-piston Stirling generator," Energy, Elsevier, vol. 273(C).
    7. Chen, Geng & Tang, Lihua & Mace, Brian & Yu, Zhibin, 2021. "Multi-physics coupling in thermoacoustic devices: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Darkwa, J. & Fraser, S. & Chow, D.H.C., 2012. "Theoretical and practical analysis of an integrated solar hot water-powered absorption cooling system," Energy, Elsevier, vol. 39(1), pages 395-402.
    9. Rech, Sergio & Finco, Elisa & Lazzaretto, Andrea, 2020. "A multicriteria approach to choose the best renewable refrigeration system for food preservation," Renewable Energy, Elsevier, vol. 154(C), pages 368-384.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).
    2. González-Gil, A. & Izquierdo, M. & Marcos, J.D. & Palacios, E., 2012. "New flat-fan sheets adiabatic absorber for direct air-cooled LiBr/H2O absorption machines: Simulation, parametric study and experimental results," Applied Energy, Elsevier, vol. 98(C), pages 162-173.
    3. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    4. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    5. Privat, Romain & Qian, Jun-Wei & Alonso, Dominique & Jaubert, Jean-Noël, 2013. "Quest for an efficient binary working mixture for an absorption-demixing heat transformer," Energy, Elsevier, vol. 55(C), pages 594-609.
    6. Amirante, Riccardo & Clodoveo, Maria Lisa & Distaso, Elia & Ruggiero, Francesco & Tamburrano, Paolo, 2016. "A tri-generation plant fuelled with olive tree pruning residues in Apulia: An energetic and economic analysis," Renewable Energy, Elsevier, vol. 89(C), pages 411-421.
    7. Luo, Jiaqi & Zhou, Qiang & Jin, Tao, 2023. "Theoretical and experimental investigation of acoustic field adjustment of a gas-liquid standing-wave thermoacoustic engine," Energy, Elsevier, vol. 276(C).
    8. Jayasekara, Saliya & Halgamuge, Saman K., 2014. "A combined effect absorption chiller for enhanced performance of combined cooling heating and power systems," Applied Energy, Elsevier, vol. 127(C), pages 239-248.
    9. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    10. Hessam Taherian & Robert W. Peters, 2023. "Advanced Active and Passive Methods in Residential Energy Efficiency," Energies, MDPI, vol. 16(9), pages 1-19, May.
    11. Bigham, Sajjad & Yu, Dazhi & Chugh, Devesh & Moghaddam, Saeed, 2014. "Moving beyond the limits of mass transport in liquid absorbent microfilms through the implementation of surface-induced vortices," Energy, Elsevier, vol. 65(C), pages 621-630.
    12. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    13. Rui, Ziliang & Sun, Hong & Ma, Jie & Peng, Hao, 2023. "Experimental study and prediction on the thermal management performance of SDS aqueous solution based microchannel flow boiling system," Energy, Elsevier, vol. 282(C).
    14. Alrobaian, Abdulrahman A., 2023. "Impact of optimal sizing and integration of thermal energy storage in solar assisted energy systems," Renewable Energy, Elsevier, vol. 211(C), pages 761-771.
    15. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    16. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    17. Wonchala, Jason & Hazledine, Maxwell & Goni Boulama, Kiari, 2014. "Solution procedure and performance evaluation for a water–LiBr absorption refrigeration machine," Energy, Elsevier, vol. 65(C), pages 272-284.
    18. Xu Wang & Pallav Purohit, 2022. "Transitioning to low-GWP alternatives with enhanced energy efficiency in cooling non-residential buildings of China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-28, October.
    19. Siddique, Muhammad Zeeshan & Badar, Abdul Waheed & Siddiqui, M. Salman & Butt, Fahad Sarfraz & Saleem, Muhammad & Mahmood, Khalid & Fazal, Imran, 2022. "Performance analysis of double effect solar absorption cooling system with different schemes of hot/cold auxiliary integration and parallel-serial arrangement of solar field," Energy, Elsevier, vol. 245(C).
    20. Haofan Mu & Weixiu Shi, 2024. "Review of Operation Performance and Application Status of Pulsating Heat Pipe," Sustainability, MDPI, vol. 16(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224003827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.