IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v256y2022ics0360544222015596.html
   My bibliography  Save this article

Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure

Author

Listed:
  • Einolander, Johannes
  • Lahdelma, Risto

Abstract

This paper proposes a novel combined event-based simulation model for assessing the explicit demand response potential of electric vehicle (EV) charging networks. The model utilizes different multivariate copulas in generation of realistic artificial charging events that effectively retain the complex dependency structures and parameter distributions of real data important for accurate demand response simulation. A deterministic model is used to estimate the maximal explicit demand response potential of individual charging events based on technical requirements of the frequency containment reserve for disturbance situations (FCR-D) market. The proposed model achieved a mean absolute percentage error (MAPE) of 3.27% when considering averaged daily dispatchable FCR-D potentials, and a MAPE of 4.65% in prediction of dispatchable FCR-D potential with one workweek of data. The results and methodology have been verified and validated with real life data and through comparison with a previous non-copula application for EV FCR profile estimation which it outperformed. The combined event-based simulation model can boost active participation of EVs in power network balancing and is suitable for use in various practical and theoretical applications.

Suggested Citation

  • Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015596
    DOI: 10.1016/j.energy.2022.124656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222015596
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    2. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    3. Jianwei Gao & Yu Yang & Fangjie Gao & Pengcheng Liang, 2021. "Optimization of Electric Vehicles Based on Frank-Copula- GlueCVaR Combined Wind and Photovoltaic Output Scheduling Research," Energies, MDPI, vol. 14(19), pages 1-15, September.
    4. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    5. Ebrahimi, Seyyed Reza & Rahimiyan, Morteza & Assili, Mohsen & Hajizadeh, Amin, 2022. "Home energy management under correlated uncertainties: A statistical analysis through Copula," Applied Energy, Elsevier, vol. 305(C).
    6. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    7. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    8. Harris, Chioke B. & Webber, Michael E., 2014. "An empirically-validated methodology to simulate electricity demand for electric vehicle charging," Applied Energy, Elsevier, vol. 126(C), pages 172-181.
    9. Sarabi, Siyamak & Davigny, Arnaud & Courtecuisse, Vincent & Riffonneau, Yann & Robyns, Benoît, 2016. "Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids," Applied Energy, Elsevier, vol. 171(C), pages 523-540.
    10. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    11. Kempitiya, Thimal & Sierla, Seppo & De Silva, Daswin & Yli-Ojanperä, Matti & Alahakoon, Damminda & Vyatkin, Valeriy, 2020. "An Artificial Intelligence framework for bidding optimization with uncertainty in multiple frequency reserve markets," Applied Energy, Elsevier, vol. 280(C).
    12. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    13. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    14. Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
    15. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    16. Yimin Zhou & Zhifei Li & Xinyu Wu, 2018. "The Multiobjective Based Large-Scale Electric Vehicle Charging Behaviours Analysis," Complexity, Hindawi, vol. 2018, pages 1-16, October.
    17. Colmenar-Santos, Antonio & Muñoz-Gómez, Antonio-Miguel & Rosales-Asensio, Enrique & López-Rey, África, 2019. "Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario," Energy, Elsevier, vol. 183(C), pages 61-74.
    18. Crozier, Constance & Morstyn, Thomas & McCulloch, Malcolm, 2020. "The opportunity for smart charging to mitigate the impact of electric vehicles on transmission and distribution systems," Applied Energy, Elsevier, vol. 268(C).
    19. Alexandre Lucas & Ricardo Barranco & Nazir Refa, 2019. "EV Idle Time Estimation on Charging Infrastructure, Comparing Supervised Machine Learning Regressions," Energies, MDPI, vol. 12(2), pages 1-17, January.
    20. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
    21. Hasankhani, Arezoo & Hakimi, Seyed Mehdi, 2021. "Stochastic energy management of smart microgrid with intermittent renewable energy resources in electricity market," Energy, Elsevier, vol. 219(C).
    22. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    23. Forrest, Kate & Mac Kinnon, Michael & Tarroja, Brian & Samuelsen, Scott, 2020. "Estimating the technical feasibility of fuel cell and battery electric vehicles for the medium and heavy duty sectors in California," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Rui & Yu, Jilai, 2024. "Evaluating multi-dimensional response capability of electric bus considering carbon emissions and traffic index," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    2. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    3. Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
    4. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    5. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    6. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    7. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    8. Simolin, Toni & Rauma, Kalle & Viri, Riku & Mäkinen, Johanna & Rautiainen, Antti & Järventausta, Pertti, 2021. "Charging powers of the electric vehicle fleet: Evolution and implications at commercial charging sites," Applied Energy, Elsevier, vol. 303(C).
    9. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    10. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    11. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    12. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    13. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    14. Yuan, Hong & Ma, Minda & Zhou, Nan & Xie, Hui & Ma, Zhili & Xiang, Xiwang & Ma, Xin, 2024. "Battery electric vehicle charging in China: Energy demand and emissions trends in the 2020s," Applied Energy, Elsevier, vol. 365(C).
    15. Jun Dong & Dongran Liu & Xihao Dou & Bo Li & Shiyao Lv & Yuzheng Jiang & Tongtao Ma, 2021. "Key Issues and Technical Applications in the Study of Power Markets as the System Adapts to the New Power System in China," Sustainability, MDPI, vol. 13(23), pages 1-29, December.
    16. Alexandra Märtz & Uwe Langenmayr & Sabrina Ried & Katrin Seddig & Patrick Jochem, 2022. "Charging Behavior of Electric Vehicles: Temporal Clustering Based on Real-World Data," Energies, MDPI, vol. 15(18), pages 1-26, September.
    17. Hipolito, F. & Vandet, C.A. & Rich, J., 2022. "Charging, steady-state SoC and energy storage distributions for EV fleets," Applied Energy, Elsevier, vol. 317(C).
    18. Siobhan Powell & Gustavo Vianna Cezar & Liang Min & Inês M. L. Azevedo & Ram Rajagopal, 2022. "Charging infrastructure access and operation to reduce the grid impacts of deep electric vehicle adoption," Nature Energy, Nature, vol. 7(10), pages 932-945, October.
    19. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    20. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Operational scheduling of electric vehicles parking lot integrated with renewable generation based on bilevel programming approach," Energy, Elsevier, vol. 139(C), pages 422-432.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:256:y:2022:i:c:s0360544222015596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.