IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp419-434.html
   My bibliography  Save this article

Ordered charge control considering the uncertainty of charging load of electric vehicles based on Markov chain

Author

Listed:
  • Han, Xiaojuan
  • Wei, Zixuan
  • Hong, Zhenpeng
  • Zhao, Song

Abstract

In order to improve the consumption capacity of renewable energy, an ordered charging control method of electric vehicles based on Markov chain prediction is proposed considering the uncertainty of the electric vehicle charging load. The quantity of electric vehicles in different parking lots and different time periods is predicted by the Markov chain to calculate the electric vehicle charging load of the photovoltaic charging station. Taking the minimum power sum of a photovoltaic charging station, the minimum cost of users and the maximum consumption of the renewable energy as the objective functions, an ordered charging control model with the interest and willingness of electric vehicle users is established. The peak-to-valley time period is divided by the particle swarm optimization algorithm, and the genetic algorithm is used to solve the model. The simulation tests of the electric vehicle driving data provided by the Unite State Travel Survey website verify the correctness and effectiveness of the proposed method, the effects of different peak and valley periods and the responsiveness of electric vehicle users on the ordered charging control of electric vehicles are compared and analyzed. The simulation results show that the prediction accuracy of the charging load obtained by the Markov chain is significantly higher than that of Monte Carlo, and when the responsiveness of electric vehicle users reaches 90%, the total charging cost can be reduced by up to 16.89%. The ordered charging strategy of electric vehicles proposed in this paper can effectively reduce the peak-to-valley difference, increase the consumption of renewable energy, and reduce the charging cost of electric vehicle users.

Suggested Citation

  • Han, Xiaojuan & Wei, Zixuan & Hong, Zhenpeng & Zhao, Song, 2020. "Ordered charge control considering the uncertainty of charging load of electric vehicles based on Markov chain," Renewable Energy, Elsevier, vol. 161(C), pages 419-434.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:419-434
    DOI: 10.1016/j.renene.2020.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120310892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Yanchong & Wang, Yubin & Yang, Qiang, 2023. "Bidding strategy design for electric vehicle aggregators in the day-ahead electricity market considering price volatility: A risk-averse approach," Energy, Elsevier, vol. 283(C).
    2. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    3. Yao, Zhaosheng & Wang, Zhiyuan & Ran, Lun, 2023. "Smart charging and discharging of electric vehicles based on multi-objective robust optimization in smart cities," Applied Energy, Elsevier, vol. 343(C).
    4. Liao, Wei & Xiao, Fu & Li, Yanxue & Zhang, Hanbei & Peng, Jinqing, 2024. "A comparative study of demand-side energy management strategies for building integrated photovoltaics-battery and electric vehicles (EVs) in diversified building communities," Applied Energy, Elsevier, vol. 361(C).
    5. Yang, Chuxiao & Hao, Yu & Irfan, Muhammad, 2021. "Energy consumption structural adjustment and carbon neutrality in the post-COVID-19 era," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 442-453.
    6. Ren, Fei & Tian, Chenlu & Zhang, Guiqing & Li, Chengdong & Zhai, Yuan, 2022. "A hybrid method for power demand prediction of electric vehicles based on SARIMA and deep learning with integration of periodic features," Energy, Elsevier, vol. 250(C).
    7. Yin, Wanjun & Ji, Jianbo, 2024. "Research on EV charging load forecasting and orderly charging scheduling based on model fusion," Energy, Elsevier, vol. 290(C).
    8. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    2. Du, Jiuyu & Ouyang, Danhua, 2017. "Progress of Chinese electric vehicles industrialization in 2015: A review," Applied Energy, Elsevier, vol. 188(C), pages 529-546.
    3. Duggal, Angel Swastik & Singh, Rajesh & Gehlot, Anita & Gupta, Lovi Raj & Akram, Sheik Vaseem & Prakash, Chander & Singh, Sunpreet & Kumar, Raman, 2021. "Infrastructure, mobility and safety 4.0: Modernization in road transportation," Technology in Society, Elsevier, vol. 67(C).
    4. Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
    5. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    6. Motoaki, Yutaka & Yi, Wenqi & Salisbury, Shawn, 2018. "Empirical analysis of electric vehicle fast charging under cold temperatures," Energy Policy, Elsevier, vol. 122(C), pages 162-168.
    7. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    8. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    9. Lee, Yerim & Hur, Jin, 2019. "A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion," Renewable Energy, Elsevier, vol. 144(C), pages 172-179.
    10. Mariz B. Arias & Sungwoo Bae, 2021. "Solar Photovoltaic Power Prediction Using Big Data Tools," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    11. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    12. Paweł Piotrowski & Dariusz Baczyński & Marcin Kopyt, 2022. "Medium-Term Forecasts of Load Profiles in Polish Power System including E-Mobility Development," Energies, MDPI, vol. 15(15), pages 1-27, August.
    13. Wang, Yue & Shi, Jianmai & Wang, Rui & Liu, Zhong & Wang, Ling, 2018. "Siting and sizing of fast charging stations in highway network with budget constraint," Applied Energy, Elsevier, vol. 228(C), pages 1255-1271.
    14. Marzio Barresi & Edoardo Ferri & Luigi Piegari, 2023. "An MV-Connected Ultra-Fast Charging Station Based on MMC and Dual Active Bridge with Multiple dc Buses," Energies, MDPI, vol. 16(9), pages 1-23, May.
    15. Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
    16. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
    17. Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    18. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    19. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    20. Elena PUICA, 2021. "A Classification Predictive Model to Analyze the Supply Chain Strategies," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 25(2), pages 29-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:419-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.