IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v202y2020ics0360544220307878.html
   My bibliography  Save this article

A dynamic charging strategy with hybrid fast charging station for electric vehicles

Author

Listed:
  • Elma, Onur

Abstract

The popularity of electric vehicles (EV) have been on the rise with technological advancements and environmental concerns. The charging time and charging demand are important challenges for EV adaptation. In order to address these challenges, a DC fast charging technology with a dynamic energy management system is proposed in this study. However, DC fast chargers require high power demand periods to reduce the charging time. This, in turn, will cause negative effects on the grid such as stability, resilience, and efficiency problems. The purpose of the study is to evaluate a hybrid DC fast charging station with the aim of reducing peak demand during charging periods. The proposed energy management algorithm together with the dynamic data use provides more reliable results on such systems operations. With the proposed control algorithm, both peak demand from the grid is substantially reduced by 45% and the battery life span is extended thanks to more controlled charge/discharge coordination.

Suggested Citation

  • Elma, Onur, 2020. "A dynamic charging strategy with hybrid fast charging station for electric vehicles," Energy, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307878
    DOI: 10.1016/j.energy.2020.117680
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220307878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    2. Flores, Robert J. & Shaffer, Brendan P. & Brouwer, Jacob, 2016. "Electricity costs for an electric vehicle fueling station with Level 3 charging," Applied Energy, Elsevier, vol. 169(C), pages 813-830.
    3. Hanemann, Philipp & Behnert, Marika & Bruckner, Thomas, 2017. "Effects of electric vehicle charging strategies on the German power system," Applied Energy, Elsevier, vol. 203(C), pages 608-622.
    4. Ding, Huajie & Hu, Zechun & Song, Yonghua, 2015. "Value of the energy storage system in an electric bus fast charging station," Applied Energy, Elsevier, vol. 157(C), pages 630-639.
    5. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    6. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    7. Elma, Onur & Taşcıkaraoğlu, Akın & Tahir İnce, A. & Selamoğulları, Uğur S., 2017. "Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts," Energy, Elsevier, vol. 134(C), pages 206-220.
    8. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
    9. Thomas, Dimitrios & Deblecker, Olivier & Ioakimidis, Christos S., 2018. "Optimal operation of an energy management system for a grid-connected smart building considering photovoltaics’ uncertainty and stochastic electric vehicles’ driving schedule," Applied Energy, Elsevier, vol. 210(C), pages 1188-1206.
    10. Peng, Chao & Zou, Jianxiao & Lian, Lian & Li, Liying, 2017. "An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits," Applied Energy, Elsevier, vol. 190(C), pages 591-599.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paudel, Diwas & Das, Tapas K., 2023. "A deep reinforcement learning approach for power management of battery-assisted fast-charging EV hubs participating in day-ahead and real-time electricity markets," Energy, Elsevier, vol. 283(C).
    2. Jin, Ruiyang & Zhou, Yuke & Lu, Chao & Song, Jie, 2022. "Deep reinforcement learning-based strategy for charging station participating in demand response," Applied Energy, Elsevier, vol. 328(C).
    3. Makeen, Peter & Ghali, Hani A. & Memon, Saim & Duan, Fang, 2023. "Smart techno-economic operation of electric vehicle charging station in Egypt," Energy, Elsevier, vol. 264(C).
    4. Hemmatpour, Mohammad Hasan & Rezaeian Koochi, Mohammad Hossein & Dehghanian, Pooria & Dehghanian, Payman, 2022. "Voltage and energy control in distribution systems in the presence of flexible loads considering coordinated charging of electric vehicles," Energy, Elsevier, vol. 239(PA).
    5. Fu, Zhengtang & Dong, Peiwu & Ju, Yanbing & Gan, Zhenkun & Zhu, Min, 2022. "An intelligent green vehicle management system for urban food reliably delivery:A case study of Shanghai, China," Energy, Elsevier, vol. 257(C).
    6. Sami M. Alshareef, 2022. "A Novel Fairness-Based Cost Model for Adopting Smart Charging at Fast Charging Stations," Sustainability, MDPI, vol. 14(11), pages 1-28, May.
    7. Tiande Mo & Yu Li & Kin-tak Lau & Chi Kin Poon & Yinghong Wu & Yang Luo, 2022. "Trends and Emerging Technologies for the Development of Electric Vehicles," Energies, MDPI, vol. 15(17), pages 1-34, August.
    8. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Heymann, Fabian, 2021. "Spatial connection cost minimization of EV fast charging stations in electric distribution networks using local search and graph theory," Energy, Elsevier, vol. 235(C).
    9. Luo, Lizi & He, Pinquan & Gu, Wei & Sheng, Wanxing & Liu, Keyan & Bai, Muke, 2022. "Temporal-spatial scheduling of electric vehicles in AC/DC distribution networks," Energy, Elsevier, vol. 255(C).
    10. Aree Wangsupphaphol & Surachai Chaitusaney & Mohamed Salem, 2023. "A Techno-Economic Assessment of a Second-Life Battery and Photovoltaics Hybrid Power Source for Sustainable Electric Vehicle Home Charging," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    11. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    12. Natascia Andrenacci & Mauro Di Monaco & Giuseppe Tomasso, 2022. "Influence of Battery Aging on the Operation of a Charging Infrastructure," Energies, MDPI, vol. 15(24), pages 1-18, December.
    13. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buonomano, Annamaria, 2020. "Building to Vehicle to Building concept: A comprehensive parametric and sensitivity analysis for decision making aims," Applied Energy, Elsevier, vol. 261(C).
    2. Muratori, Matteo & Kontou, Eleftheria & Eichman, Joshua, 2019. "Electricity rates for electric vehicle direct current fast charging in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Zhu, Feiqin & Li, Yalun & Lu, Languang & Wang, Hewu & Li, Liguo & Li, Kexin & Ouyang, Minggao, 2023. "Life cycle optimization framework of charging–swapping integrated energy supply systems for multi-type vehicles," Applied Energy, Elsevier, vol. 351(C).
    4. Baumgarte, Felix & Kaiser, Matthias & Keller, Robert, 2021. "Policy support measures for widespread expansion of fast charging infrastructure for electric vehicles," Energy Policy, Elsevier, vol. 156(C).
    5. Zhouquan Wu & Pradeep Krishna Bhat & Bo Chen, 2023. "Optimal Configuration of Extreme Fast Charging Stations Integrated with Energy Storage System and Photovoltaic Panels in Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.
    6. Buonomano, A. & Calise, F. & Cappiello, F.L. & Palombo, A. & Vicidomini, M., 2019. "Dynamic analysis of the integration of electric vehicles in efficient buildings fed by renewables," Applied Energy, Elsevier, vol. 245(C), pages 31-50.
    7. Sun, Chuyu & Zhao, Xiaoli & Qi, Binbin & Xiao, Weihao & Zhang, Hongjun, 2022. "Economic and environmental analysis of coupled PV-energy storage-charging station considering location and scale," Applied Energy, Elsevier, vol. 328(C).
    8. Ruifeng Shi & Jie Zhang & Hao Su & Zihang Liang & Kwang Y. Lee, 2020. "An Economic Penalty Scheme for Optimal Parking Lot Utilization with EV Charging Requirements," Energies, MDPI, vol. 13(22), pages 1-21, November.
    9. Yorick Ligen & Heron Vrubel & Hubert Girault, 2019. "Local Energy Storage and Stochastic Modeling for Ultrafast Charging Stations," Energies, MDPI, vol. 12(10), pages 1-14, May.
    10. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Giuzio, Giovanni Francesco & Palombo, Adolfo & Russo, Giuseppe, 2022. "Energy virtual networks based on electric vehicles for sustainable buildings: System modelling for comparative energy and economic analyses," Energy, Elsevier, vol. 242(C).
    11. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    12. Zheng, Yanchong & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jian, Linni, 2019. "Integrating plug-in electric vehicles into power grids: A comprehensive review on power interaction mode, scheduling methodology and mathematical foundation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 424-439.
    13. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    14. Muratori, Matteo & Elgqvist, Emma & Cutler, Dylan & Eichman, Joshua & Salisbury, Shawn & Fuller, Zachary & Smart, John, 2019. "Technology solutions to mitigate electricity cost for electric vehicle DC fast charging," Applied Energy, Elsevier, vol. 242(C), pages 415-423.
    15. Elio Chiodo & Maurizio Fantauzzi & Davide Lauria & Fabio Mottola, 2018. "A Probabilistic Approach for the Optimal Sizing of Storage Devices to Increase the Penetration of Plug-in Electric Vehicles in Direct Current Networks," Energies, MDPI, vol. 11(5), pages 1-20, May.
    16. Yu, Hang & Niu, Songyan & Zhang, Yumeng & Jian, Linni, 2020. "An integrated and reconfigurable hybrid AC/DC microgrid architecture with autonomous power flow control for nearly/net zero energy buildings," Applied Energy, Elsevier, vol. 263(C).
    17. Tang, Yanyan & Zhang, Qi & Wen, Zongguo & Bunn, Derek & Martin, Jesus Nieto, 2022. "Optimal analysis for facility configuration and energy management on electric light commercial vehicle charging," Energy, Elsevier, vol. 246(C).
    18. Liu, Xiaochen & Fu, Zhi & Qiu, Siyuan & Li, Shaojie & Zhang, Tao & Liu, Xiaohua & Jiang, Yi, 2023. "Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design," Energy, Elsevier, vol. 271(C).
    19. Ahmed Abdalrahman & Weihua Zhuang, 2017. "A Survey on PEV Charging Infrastructure: Impact Assessment and Planning," Energies, MDPI, vol. 10(10), pages 1-25, October.
    20. Rubino, Luigi & Capasso, Clemente & Veneri, Ottorino, 2017. "Review on plug-in electric vehicle charging architectures integrated with distributed energy sources for sustainable mobility," Applied Energy, Elsevier, vol. 207(C), pages 438-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:202:y:2020:i:c:s0360544220307878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.