IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v156y2020icp1065-1075.html
   My bibliography  Save this article

Catalytic upgrading of acetone, butanol and ethanol (ABE): A step ahead for the production of added value chemicals in bio-refineries

Author

Listed:
  • Ketabchi, Elham
  • Pastor-Pérez, Laura
  • Reina, Tomas Ramirez
  • Arellano-García, Harvey

Abstract

With the aim of moving towards sustainability and renewable energy sources, we have studied the production of long chain hydrocarbons from a renewable source of biomass to reduce negative impacts of greenhouse gas emissions while providing a suitable alternative for fossil fuel-based processes. Herein we report a catalytic strategy for Acetone, Butanol and Ethanol (ABE) upgrading using economically viable catalysts with potential impact in modern bio-refineries. Our catalysts based on transition metals such as Ni, Fe and Cu supported on MgO–Al2O3 have been proven to perform exceptionally with outstanding conversions towards the production of a broad range of added value chemicals from C2 to C15. Although all catalysts displayed meritorious performance, the Fe catalyst has shown the best results in terms conversion (89%). Interestingly, the Cu catalyst displays the highest selectivity towards long chain hydrocarbons (14%). Very importantly, our approach suppresses the utilization of solvents and additives resulting directly in upgraded hydrocarbons that are of use in the chemical and/or the transportation industry. Overall, this seminal work opens the possibility to consider ABE upgrading as a viable route in bio-refineries to produce renewably sourced added value products in an economically favorable way. In addition, the described process can be envisaged as a cross-link stream among bio and traditional refineries aiming to reduce fossil fuel sources involved and incorporate “greener” solutions.

Suggested Citation

  • Ketabchi, Elham & Pastor-Pérez, Laura & Reina, Tomas Ramirez & Arellano-García, Harvey, 2020. "Catalytic upgrading of acetone, butanol and ethanol (ABE): A step ahead for the production of added value chemicals in bio-refineries," Renewable Energy, Elsevier, vol. 156(C), pages 1065-1075.
  • Handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1065-1075
    DOI: 10.1016/j.renene.2020.04.152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812030690X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.04.152?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pazhamalai Anbarasan & Zachary C. Baer & Sanil Sreekumar & Elad Gross & Joseph B. Binder & Harvey W. Blanch & Douglas S. Clark & F. Dean Toste, 2012. "Integration of chemical catalysis with extractive fermentation to produce fuels," Nature, Nature, vol. 491(7423), pages 235-239, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frolich, Karel & Malina, Jan & Hájek, Martin & Kocík, Jaroslav, 2024. "The utilization of ethanol for production of 1-butanol catalysed by Li–Al mixed metal oxides enhanced by Cu," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    2. Shengzhe Ding & Dario Luis Fernandez Ainaga & Min Hu & Boya Qiu & Ushna Khalid & Carmine D’Agostino & Xiaoxia Ou & Ben Spencer & Xiangli Zhong & Yani Peng & Nicole Hondow & Constantinos Theodoropoulos, 2024. "Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    3. Tong Wang & Tuo Zhou & Chaoran Li & Qiang Song & Man Zhang & Hairui Yang, 2024. "Development Status and Prospects of Biomass Energy in China," Energies, MDPI, vol. 17(17), pages 1-25, September.
    4. Wang, Wei-Cheng & Tao, Ling, 2016. "Bio-jet fuel conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 801-822.
    5. Zhufan Zou & Zhenjie Yu & Weixiang Guan & Yanfang Liu & Yumin Yao & Yang Han & Guangyi Li & Aiqin Wang & Yu Cong & Xinmiao Liang & Tao Zhang & Ning Li, 2024. "Selective production of methylindan and tetralin with xylose or hemicellulose," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    7. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    8. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    9. Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
    10. Zhang, Rui & He, Yuting & Luo, Yuehui & Lou, DanFeng & Zhu, Rui & Zhu, Can & Li, Quanxin, 2023. "Selective preparation of jet fuels from low carbon alcohols and ABE at atmospheric pressure," Energy, Elsevier, vol. 281(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:1065-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.