IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-51925-2.html
   My bibliography  Save this article

Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes

Author

Listed:
  • Shengzhe Ding

    (The University of Manchester
    Sinopec)

  • Dario Luis Fernandez Ainaga

    (University of Leeds)

  • Min Hu

    (The University of Manchester)

  • Boya Qiu

    (The University of Manchester)

  • Ushna Khalid

    (The University of Manchester)

  • Carmine D’Agostino

    (The University of Manchester
    Università di Bologna)

  • Xiaoxia Ou

    (The University of Manchester
    Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute)

  • Ben Spencer

    (The University of Manchester
    The University of Manchester)

  • Xiangli Zhong

    (The University of Manchester
    The University of Manchester)

  • Yani Peng

    (The University of Manchester)

  • Nicole Hondow

    (University of Leeds)

  • Constantinos Theodoropoulos

    (The University of Manchester)

  • Yilai Jiao

    (Chinese Academy of Sciences)

  • Christopher M. A. Parlett

    (The University of Manchester
    Didcot
    Didcot
    Harwell)

  • Xiaolei Fan

    (The University of Manchester
    Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute
    Zhejiang University)

Abstract

Spatial control over features within multifunctional catalysts can unlock efficient one-pot cascade reactions, which are themselves a pathway to aviation biofuels via hydrodeoxygenation. A synthesis strategy that encompasses spatial orthogonality, i.e., one in which different catalytic species are deposited exclusively within discrete locations of a support architecture, is one solution that permits control over potential interactions between different sites and the cascade process. Here, we report a Pd doped hierarchical zeolite, in which Pd nanoparticles are selectively deposited within the mesopores, while acidity is retained solely within the micropores of ZSM-5. This spatial segregation facilitates hydrodeoxygenation while suppressing undesirable decarboxylation and decarbonation, yielding significant enhancements in activity (30.6 vs 3.6 moldodecane molPd−1 h−1) and selectivity (C12:C11 5.2 vs 1.9) relative to a conventionally prepared counterpart (via wet impregnation). Herein, multifunctional material design can realise efficient fatty acid hydrodeoxygenation, thus advancing the field and inspiring future developments in rationalised catalyst design.

Suggested Citation

  • Shengzhe Ding & Dario Luis Fernandez Ainaga & Min Hu & Boya Qiu & Ushna Khalid & Carmine D’Agostino & Xiaoxia Ou & Ben Spencer & Xiangli Zhong & Yani Peng & Nicole Hondow & Constantinos Theodoropoulos, 2024. "Spatial segregation of catalytic sites within Pd doped H-ZSM-5 for fatty acid hydrodeoxygenation to alkanes," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51925-2
    DOI: 10.1038/s41467-024-51925-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-51925-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-51925-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pazhamalai Anbarasan & Zachary C. Baer & Sanil Sreekumar & Elad Gross & Joseph B. Binder & Harvey W. Blanch & Douglas S. Clark & F. Dean Toste, 2012. "Integration of chemical catalysis with extractive fermentation to produce fuels," Nature, Nature, vol. 491(7423), pages 235-239, November.
    2. O’Connell, Adrian & Kousoulidou, Marina & Lonza, Laura & Weindorf, Werner, 2019. "Considerations on GHG emissions and energy balances of promising aviation biofuel pathways," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 504-515.
    3. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    4. Dieter Enders & Matthias R. M. Hüttl & Christoph Grondal & Gerhard Raabe, 2006. "Control of four stereocentres in a triple cascade organocatalytic reaction," Nature, Nature, vol. 441(7095), pages 861-863, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Sabarathinam Shanmugam & Anjana Hari & Arivalagan Pugazhendhi & Timo Kikas, 2023. "Integrated Catalytic Upgrading of Biomass-Derived Alcohols for Advanced Biofuel Production," Energies, MDPI, vol. 16(13), pages 1-24, June.
    3. Bao, Xiuchao & Jiang, Yizhou & Xu, Hongming & Wang, Chongming & Lattimore, Thomas & Tang, Lan, 2017. "Laminar flame characteristics of cyclopentanone at elevated temperatures," Applied Energy, Elsevier, vol. 195(C), pages 671-680.
    4. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    5. Xu, Xiwei & Jiang, Enchen & Li, Zhiyu & Zhu, Xiongfa & Sun, Yan & Tu, Ren, 2019. "Alkene and benzene derivate obtained from catalytic reforming of acetone-butanol-ethanol (ABE) from carbohydrates fermentation broth," Renewable Energy, Elsevier, vol. 135(C), pages 1213-1223.
    6. Fan, Yee Van & Klemeš, Jiří Jaromír & Walmsley, Timothy Gordon & Perry, Simon, 2019. "Minimising energy consumption and environmental burden of freight transport using a novel graphical decision-making tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Awasthi, Mukesh Kumar & Singh, Ekta & Binod, Parameswaran & Sindhu, Raveendran & Sarsaiya, Surendra & Kumar, Aman & Chen, Hongyu & Duan, Yumin & Pandey, Ashok & Kumar, Sunil & Taherzadeh, Mohammad J. , 2022. "Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "Direct conversion of glyceride-based oil into renewable jet fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Riccardo Colantuono, 2021. "Market-based measures and aviation sustainability in the European Union: an assessment," SEEDS Working Papers 0921, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jul 2021.
    10. Svetlana Proskurina & Clara Mendoza-Martinez, 2023. "Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU," Energies, MDPI, vol. 16(14), pages 1-16, July.
    11. Chakraborty, Sourabh & Dunford, Nurhan Turgut & Goad, Carla, 2021. "A kinetic study of microalgae, municipal sludge and cedar wood co-pyrolysis," Renewable Energy, Elsevier, vol. 165(P1), pages 514-524.
    12. Nogueira, Cleitiane da Costa & Padilha, Carlos Eduardo de Araújo & Dantas, Júlia Maria de Medeiros & Medeiros, Fábio Gonçalves Macêdo de & Guilherme, Alexandre de Araújo & Souza, Domingos Fabiano de S, 2021. "In-situ detoxification strategies to boost bioalcohol production from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 180(C), pages 914-936.
    13. Tong Wang & Tuo Zhou & Chaoran Li & Qiang Song & Man Zhang & Hairui Yang, 2024. "Development Status and Prospects of Biomass Energy in China," Energies, MDPI, vol. 17(17), pages 1-25, September.
    14. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Falcone, Pasquale Marcello & Lopolito, Antonio & Sica, Edgardo, 2019. "Instrument mix for energy transition: A method for policy formulation," Technological Forecasting and Social Change, Elsevier, vol. 148(C).
    16. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress," Applied Energy, Elsevier, vol. 297(C).
    18. Maghrebi, R. & Buffi, M. & Bondioli, P. & Chiaramonti, D., 2021. "Isomerization of long-chain fatty acids and long-chain hydrocarbons: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Hong Guan & Hao Liu & Raafat George Saadé, 2022. "Analysis of Carbon Emission Reduction in International Civil Aviation through the Lens of Shared Triple Bottom Line Value Creation," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    20. Spatari, S. & Larnaudie, V. & Mannoh, I. & Wheeler, M.C. & Macken, N.A. & Mullen, C.A. & Boateng, A.A., 2020. "Environmental, exergetic and economic tradeoffs of catalytic- and fast pyrolysis-to-renewable diesel," Renewable Energy, Elsevier, vol. 162(C), pages 371-380.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-51925-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.