IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v273y2023ics036054422300573x.html
   My bibliography  Save this article

Thermodynamic performance study and RSM based optimization of SI engine using sewage sludge producer gas blend with methane

Author

Listed:
  • Jena, Priyaranjan
  • Raj, Reetu
  • Tirkey, Jeewan Vachan

Abstract

Looking forward to valorizing the waste municipal sewage sludge (SS), the present study aims to simulate SI engine performance using sewage sludge-producer gas (SSPG), and its performance investigation. To do this, initially, the quasi-dimensional thermodynamic model was developed to determine the SI engine performance with dual-fueled SSPG-methane blends. Thereafter, the influence of input variables on engine performance (Power, fuel consumption, and emission) was optimized through response surface methodology (RSM), aiming to enhance performance and minimize emissions. As setting inputs, the start of ignition (SOI), blend fraction, and compression ratio (CR) was taken into consideration. RSM-based optimization reveals that the best-optimized response occurs with operating variables of 13 CR, 10% SSPG blending, and SOI at 34.09° before top dead center (bTDC) for 100 simulation runs. The respective resulting optimized responses were 35.35% ITE, 6.79 bar IMEP, 28.1% BTE, 4.6 kW BP, 5.49 bar BMEP, 12.81 MJ/kWh BSEC, with CO and NO emissions as 0.645 V% and 1967.1 ppm. Lower prediction errors were confirmed with 95% coefficient of determination (R2) and composite desirability of 0.767. The novelty of the present study is in developing simulation modeling and optimizing responses. Overall, this study predicts that the SI engine can perform efficiently with SSPG-methane blend.

Suggested Citation

  • Jena, Priyaranjan & Raj, Reetu & Tirkey, Jeewan Vachan, 2023. "Thermodynamic performance study and RSM based optimization of SI engine using sewage sludge producer gas blend with methane," Energy, Elsevier, vol. 273(C).
  • Handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300573x
    DOI: 10.1016/j.energy.2023.127179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422300573X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
    2. Mehra, Roopesh Kumar & Duan, Hao & Juknelevičius, Romualdas & Ma, Fanhua & Li, Junyin, 2017. "Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines - A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1458-1498.
    3. Andrey Kiselev & Elena Magaril & Romen Magaril & Deborah Panepinto & Marco Ravina & Maria Chiara Zanetti, 2019. "Towards Circular Economy: Evaluation of Sewage Sludge Biogas Solutions," Resources, MDPI, vol. 8(2), pages 1-19, May.
    4. Chen, Guan-Bang & Wu, Fang-Hsien & Fang, Tzu-Lu & Lin, Hsien-Tsung & Chao, Yei-Chin, 2021. "A study of Co-gasification of sewage sludge and palm kernel shells," Energy, Elsevier, vol. 218(C).
    5. Khatha Wathakit & Ekarong Sukjit & Chalita Kaewbuddee & Somkiat Maithomklang & Niti Klinkaew & Pansa Liplap & Weerachai Arjharn & Jiraphon Srisertpol, 2021. "Characterization and Impact of Waste Plastic Oil in a Variable Compression Ratio Diesel Engine," Energies, MDPI, vol. 14(8), pages 1-18, April.
    6. Kumaravel, S.T. & Murugesan, A. & Kumaravel, A., 2016. "Tyre pyrolysis oil as an alternative fuel for diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1678-1685.
    7. Joseph D. Rouse, 2013. "Sustainability of Wastewater Treatment and Excess Sludge Handling Practices in the Federated States of Micronesia," Sustainability, MDPI, vol. 5(10), pages 1-12, September.
    8. Nautiyal, Piyushi & Subramanian, K.A. & Dastidar, M.G. & Kumar, Ashok, 2020. "Experimental assessment of performance, combustion and emissions of a compression ignition engine fuelled with Spirulina platensis biodiesel," Energy, Elsevier, vol. 193(C).
    9. Hotta, Santosh Kumar & Sahoo, Niranjan & Mohanty, Kaustubha & Kulkarni, Vinayak, 2020. "Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine," Renewable Energy, Elsevier, vol. 150(C), pages 854-867.
    10. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    11. Sharma, Abhishek & Ansari, Naushad Ahmad & Pal, Amit & Singh, Yashvir & Lalhriatpuia, S., 2019. "Effect of biogas on the performance and emissions of diesel engine fuelled with biodiesel-ethanol blends through response surface methodology approach," Renewable Energy, Elsevier, vol. 141(C), pages 657-668.
    12. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jena, Priyaranjan & Tirkey, Jeewan Vachan, 2024. "Power and efficiency improvement of SI engine fueled with boosted producer gas-methane blends and LIVC-miller cycle strategy: Thermodynamic and optimization studies," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
    2. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    3. Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
    4. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    5. Tang, Yuanyou & Wang, Yang & Long, Wuqiang & Xiao, Ge & Wang, Yongjian & Li, Weixing, 2023. "Analysis and enhancement of methanol reformer performance for online reforming based on waste heat recovery of methanol-diesel dual direct injection engine," Energy, Elsevier, vol. 283(C).
    6. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    7. Imran, A. & Varman, M. & Masjuki, H.H. & Kalam, M.A., 2013. "Review on alcohol fumigation on diesel engine: A viable alternative dual fuel technology for satisfactory engine performance and reduction of environment concerning emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 739-751.
    8. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    9. Gupta, Akash Som & Khatiwada, Dilip, 2024. "Investigating the sustainability of biogas recovery systems in wastewater treatment plants- A circular bioeconomy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Fernández, Ignacio Arias & Gómez, Manuel Romero & Gómez, Javier Romero & Insua, Álvaro Baaliña, 2017. "Review of propulsion systems on LNG carriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1395-1411.
    11. Al-Harbi, Ahmed A. & Alabduly, Abdullah J. & Alkhedhair, Abdullah M. & Alqahtani, Naif B. & Albishi, Miqad S., 2022. "Effect of operation under lean conditions on NOx emissions and fuel consumption fueling an SI engine with hydrous ethanol–gasoline blends enhanced with synthesis gas," Energy, Elsevier, vol. 238(PA).
    12. Cinzia Tornatore & Luca Marchitto & Maria Antonietta Costagliola & Gerardo Valentino, 2019. "Experimental Comparative Study on Performance and Emissions of E85 Adopting Different Injection Approaches in a Turbocharged PFI SI Engine," Energies, MDPI, vol. 12(8), pages 1-15, April.
    13. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    14. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    15. Moon, Seokyoon & Lee, Yunseok & Seo, Dongju & Lee, Seungin & Hong, Sujin & Ahn, Yun-Ho & Park, Youngjune, 2021. "Critical hydrogen concentration of hydrogen-natural gas blends in clathrate hydrates for blue hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Zareei, Javad & Rohani, Abbas & Mazari, Farhad & Mikkhailova, Maria Vladimirovna, 2021. "Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions," Energy, Elsevier, vol. 231(C).
    17. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    18. Sara Alonso-Muñoz & Rocío González-Sánchez & Cristina Siligardi & Fernando Enrique García-Muiña, 2021. "Building Exploitation Routines in the Circular Supply Chain to Obtain Radical Innovations," Resources, MDPI, vol. 10(3), pages 1-18, March.
    19. Thiagarajan Janakiraman & Abhijeet Pathy & Srividhya Poosari Kumaravel & Balasubramanian Paramasivan, 2022. "Effect of coconut shell in gasification kinetics of palm kernel shells at various blending ratios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8333-8350, June.
    20. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s036054422300573x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.