IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v69y2017icp503-513.html
   My bibliography  Save this article

A review of liquefied natural gas refueling station designs

Author

Listed:
  • Sharafian, Amir
  • Talebian, Hoda
  • Blomerus, Paul
  • Herrera, Omar
  • Mérida, Walter

Abstract

The majority of operational liquefied natural gas (LNG) refueling stations in the world have no boil-off gas (BOG) management and rely on regular LNG delivery to condense the BOG. To reduce the pressure of LNG tanks onboard vehicles prior to filling, the BOG is vented to the atmosphere, is collapsed in the tank, or is returned to the refueling station. In this study, different onboard LNG tank architectures are discussed, and the design strategies for LNG conditioning and BOG management technologies employed in LNG refueling stations are analyzed. The critical analysis of different designs of LNG refueling stations indicates that 44% of designs have no BOG management, 28% of designs rely on liquid nitrogen condenser or a liquefier to condense the BOG, and 28% of designs compress the BOG to produce compressed natural gas. Our research shows that in China and the U.S., where stations with BOG management are rare, the number of LNG refueling stations has increased by 32 and 3 times, respectively, between 2010 and 2015. This study highlights the fact that as heavy fuel oil and diesel are replaced by LNG, it is critical to pay proper attention to the design of the LNG supply chain and LNG refueling stations to minimize or eliminate BOG venting and reduce greenhouse gas emissions.

Suggested Citation

  • Sharafian, Amir & Talebian, Hoda & Blomerus, Paul & Herrera, Omar & Mérida, Walter, 2017. "A review of liquefied natural gas refueling station designs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 503-513.
  • Handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:503-513
    DOI: 10.1016/j.rser.2016.11.186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116309406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.11.186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    2. Balitskiy, Sergey & Bilan, Yuriy & Strielkowski, Wadim & Štreimikienė, Dalia, 2016. "Energy efficiency and natural gas consumption in the context of economic development in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 156-168.
    3. Furuoka, Fumitaka, 2016. "Natural gas consumption and economic development in China and Japan: An empirical examination of the Asian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 100-115.
    4. Kakaee, Amir-Hasan & Paykani, Amin & Ghajar, Mostafa, 2014. "The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 64-78.
    5. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi, 2016. "Natural gas as vehicle fuel in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 521-533.
    6. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    7. Khan, Muhammad Imran & Yasmeen, Tabassam & Khan, Muhammad Ijaz & Farooq, Muhammad & Wakeel, Muhammad, 2016. "Research progress in the development of natural gas as fuel for road vehicles: A bibliographic review (1991–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 702-741.
    8. Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
    9. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    10. Khan, Muhammad Imran & Yasmin, Tabassum & Shakoor, Abdul, 2015. "Technical overview of compressed natural gas (CNG) as a transportation fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 785-797.
    11. Wang, Qiang & Li, Rongrong, 2016. "Natural gas from shale formation: A research profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1-6.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun-Seung Kim & Churl-Hee Cho, 2022. "An Economical Boil-Off Gas Management System for LNG Refueling Stations: Evaluation Using Scenario Analysis," Energies, MDPI, vol. 15(22), pages 1-14, November.
    2. Ivan Smajla & Daria Karasalihović Sedlar & Branko Drljača & Lucija Jukić, 2019. "Fuel Switch to LNG in Heavy Truck Traffic," Energies, MDPI, vol. 12(3), pages 1-19, February.
    3. Markéta Mikolajková-Alifov & Frank Pettersson & Margareta Björklund-Sänkiaho & Henrik Saxén, 2019. "A Model of Optimal Gas Supply to a Set of Distributed Consumers," Energies, MDPI, vol. 12(3), pages 1-27, January.
    4. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    5. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    6. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qiang & Song, Xiaoxing & Li, Rongrong, 2018. "A novel hybridization of nonlinear grey model and linear ARIMA residual correction for forecasting U.S. shale oil production," Energy, Elsevier, vol. 165(PB), pages 1320-1331.
    2. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    3. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
    4. Khan, Muhammad Imran & Yasmeen, Tabassam & Khan, Muhammad Ijaz & Farooq, Muhammad & Wakeel, Muhammad, 2016. "Research progress in the development of natural gas as fuel for road vehicles: A bibliographic review (1991–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 702-741.
    5. Hegab, Abdelrahman & La Rocca, Antonino & Shayler, Paul, 2017. "Towards keeping diesel fuel supply and demand in balance: Dual-fuelling of diesel engines with natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 666-697.
    6. Kan, Siyi & Chen, Bin & Meng, Jing & Chen, Guoqian, 2020. "An extended overview of natural gas use embodied in world economy and supply chains: Policy implications from a time series analysis," Energy Policy, Elsevier, vol. 137(C).
    7. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    8. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    9. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    10. Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
    11. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    12. Rongrong Li & Xue-Ting Jiang, 2017. "Inequality of Carbon Intensity: Empirical Analysis of China 2000–2014," Sustainability, MDPI, vol. 9(5), pages 1-12, April.
    13. Rui Jiang & Rongrong Li, 2017. "Decomposition and Decoupling Analysis of Life-Cycle Carbon Emission in China’s Building Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    14. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Keenan, Rodney J. & Pozza, Greg & Fitzsimons, James A., 2019. "Ecosystem services in environmental policy: Barriers and opportunities for increased adoption," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    16. Rongrong Li & Min Su, 2017. "The Role of Natural Gas and Renewable Energy in Curbing Carbon Emission: Case Study of the United States," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
    17. Shuyu Li & Rongrong Li, 2017. "Comparison of Forecasting Energy Consumption in Shandong, China Using the ARIMA Model, GM Model, and ARIMA-GM Model," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    18. Liu, Guixian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Cong & Li, Jiaman, 2018. "Natural gas consumption of urban households in China and corresponding influencing factors," Energy Policy, Elsevier, vol. 122(C), pages 17-26.
    19. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    20. Ibrahim, Thamir k. & Mohammed, Mohammed Kamil & Awad, Omar I. & Rahman, M.M. & Najafi, G. & Basrawi, Firdaus & Abd Alla, Ahmed N. & Mamat, Rizalman, 2017. "The optimum performance of the combined cycle power plant: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 459-474.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:69:y:2017:i:c:p:503-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.