IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222016905.html
   My bibliography  Save this article

Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE

Author

Listed:
  • Cho, Jinkyun
  • Park, Beungyong
  • Jang, Seungmin

Abstract

This study presents a prototype of an independent modular air containment (MAC) system that overcomes the limitations of the existing room-based cooling and applies a row-based cooling system for a high-density data center that can meet the requirements of energy efficiency. Furthermore, to improve the cooling efficiency and safety, we developed a novel in-row cooling package with multiple heat-transfer media (a sequential water-to-refrigerant-to-air heat exchange system). While complying with the standard test method, the objective cooling performance and PUE are derived through in-situ measurement in connection with the actual operation of a reference data center, and the energy saving contribution is analyzed. As observed from the result of the experimental measurement for the MAC with the novel in-row cooling package, the thermal balance is maintained between the water to refrigerant primary cycle and the refrigerant to air secondary cycle, and the air temperature in the cold aisle converges to 23 °C, satisfying the ASHRAE thermal guidelines. The energy influence of the in-row cooling package is extremely low with average 0.019 pPUE. For a reference data center, the analyzed energy efficiency can be improved from baseline PUE 1.563 to PUE 1.361 through 43.5% reduction in the cooling system.

Suggested Citation

  • Cho, Jinkyun & Park, Beungyong & Jang, Seungmin, 2022. "Development of an independent modular air containment system for high-density data centers: Experimental investigation of row-based cooling performance and PUE," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016905
    DOI: 10.1016/j.energy.2022.124787
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222016905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koot, Martijn & Wijnhoven, Fons, 2021. "Usage impact on data center electricity needs: A system dynamic forecasting model," Applied Energy, Elsevier, vol. 291(C).
    2. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    3. Moazamigoodarzi, Hosein & Gupta, Rohit & Pal, Souvik & Tsai, Peiying Jennifer & Ghosh, Suvojit & Puri, Ishwar K., 2020. "Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures," Applied Energy, Elsevier, vol. 261(C).
    4. Moazamigoodarzi, Hosein & Tsai, Peiying Jennifer & Pal, Souvik & Ghosh, Suvojit & Puri, Ishwar K., 2019. "Influence of cooling architecture on data center power consumption," Energy, Elsevier, vol. 183(C), pages 525-535.
    5. Cho, Jinkyun & Kim, Youngmo, 2021. "Development of modular air containment system: Thermal performance optimization of row-based cooling for high-density data centers," Energy, Elsevier, vol. 231(C).
    6. Cho, Jinkyun & Kim, Yundeok, 2016. "Improving energy efficiency of dedicated cooling system and its contribution towards meeting an energy-optimized data center," Applied Energy, Elsevier, vol. 165(C), pages 967-982.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    2. Zhou, Jing & Kanbur, Baris Burak & Le, Duc Van & Tan, Rui & Duan, Fei, 2023. "Multi-criteria assessments of increasing supply air temperature in tropical data center," Energy, Elsevier, vol. 271(C).
    3. Sun, Xiaoqing & Zhang, Ce & Han, Zongwei & Dong, Jiaxiang & Zhang, Yiqi & Li, Mengyi & Li, Xiuming & Wang, Qinghai & Wen, Zhenwu & Zheng, Baoli, 2023. "Experimental study on a novel pump-driven heat pipe/vapor compression system for rack-level cooling of data centers," Energy, Elsevier, vol. 274(C).
    4. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    5. Wang, Zhiying & Wang, Yang & Ji, Haoran & Hasanien, Hany M. & Zhao, Jinli & Yu, Lei & He, Jiafeng & Yu, Hao & Li, Peng, 2024. "Distributionally robust planning for data center park considering operational economy and reliability," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cho, Jinkyun, 2024. "Optimal supply air temperature with respect to data center operational stability and energy efficiency in a row-based cooling system under fault conditions," Energy, Elsevier, vol. 288(C).
    2. Gupta, Rohit & Moazamigoodarzi, Hosein & MirhoseiniNejad, SeyedMorteza & Down, Douglas G. & Puri, Ishwar K., 2020. "Workload management for air-cooled data centers: An energy and exergy based approach," Energy, Elsevier, vol. 209(C).
    3. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    4. Manaserh, Yaman M. & Tradat, Mohammad I. & Bani-Hani, Dana & Alfallah, Aseel & Sammakia, Bahgat G. & Nemati, Kourosh & Seymour, Mark J., 2022. "Machine learning assisted development of IT equipment compact models for data centers energy planning," Applied Energy, Elsevier, vol. 305(C).
    5. Du, Yahui & Zhou, Zhihua & Yang, Xiaochen & Yang, Xueqing & Wang, Cheng & Liu, Junwei & Yuan, Jianjuan, 2023. "Dynamic thermal environment management technologies for data center: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    6. Sijun Xu & Hua Zhang & Zilong Wang, 2023. "Thermal Management and Energy Consumption in Air, Liquid, and Free Cooling Systems for Data Centers: A Review," Energies, MDPI, vol. 16(3), pages 1-25, January.
    7. Tian, Tong & Wang, Xinyue & Liu, Yang & Yang, Xuan & Sun, Bo & Li, Ji, 2023. "Nano-engineering enabled heat pipe battery: A powerful heat transfer infrastructure with capability of power generation," Applied Energy, Elsevier, vol. 348(C).
    8. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Down, Douglas G. & Puri, Ishwar K., 2021. "Energy, exergy and computing efficiency based data center workload and cooling management," Applied Energy, Elsevier, vol. 299(C).
    9. Gupta, Rohit & Asgari, Sahar & Moazamigoodarzi, Hosein & Pal, Souvik & Puri, Ishwar K., 2020. "Cooling architecture selection for air-cooled Data Centers by minimizing exergy destruction," Energy, Elsevier, vol. 201(C).
    10. Cheng Liu & Hang Yu, 2021. "Evaluation and Optimization of a Two-Phase Liquid-Immersion Cooling System for Data Centers," Energies, MDPI, vol. 14(5), pages 1-21, March.
    11. Cho, Jinkyun & Lim, Seung-beom, 2023. "Balanced comparative assessment of thermal performance and energy efficiency for three cooling solutions in data centers," Energy, Elsevier, vol. 285(C).
    12. Lee, Yee-Ting & Wen, Chih-Yung & Shih, Yang-Cheng & Li, Zhengtong & Yang, An-Shik, 2022. "Numerical and experimental investigations on thermal management for data center with cold aisle containment configuration," Applied Energy, Elsevier, vol. 307(C).
    13. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    14. Babasola Osibo & Simisola Adamo, 2023. "Data Centers and Green Energy: Paving the Way for a Sustainable Digital Future," International Journal of Latest Technology in Engineering, Management & Applied Science, International Journal of Latest Technology in Engineering, Management & Applied Science (IJLTEMAS), vol. 12(11), pages 15-30, November.
    15. Du, Juntao & Shen, Zhiyang & Song, Malin & Zhang, Linda, 2023. "Nexus between digital transformation and energy technology innovation: An empirical test of A-share listed enterprises," Energy Economics, Elsevier, vol. 120(C).
    16. Borkowski, Mateusz & Piłat, Adam Krzysztof, 2022. "Customized data center cooling system operating at significant outdoor temperature fluctuations," Applied Energy, Elsevier, vol. 306(PB).
    17. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    18. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    19. Xiaofei Huang & Junwei Yan & Xuan Zhou & Yixin Wu & Shichen Hu, 2023. "Cooling Technologies for Internet Data Center in China: Principle, Energy Efficiency, and Applications," Energies, MDPI, vol. 16(20), pages 1-31, October.
    20. Zehua Yu & Zheng Li & Linwei Ma, 2023. "Strategies for the Resilience of Power-Coal Supply Chains in Low-Carbon Energy Transition: A System Dynamics Model and Scenario Analysis of China up to 2060," Sustainability, MDPI, vol. 15(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222016905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.