IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v185y2019icp829-836.html
   My bibliography  Save this article

Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers

Author

Listed:
  • Shao, Shuangquan
  • Liu, Haichao
  • Zhang, Hainan
  • Tian, Changqing

Abstract

Integrating evaporative cooling with loop thermosyphon can significantly improve the free cooling ability. In this paper, a loop thermosyphon with evaporative condenser is investigated experimentally. The mist water flow out of a single nozzle is observed and analyzed. The performance and annual free cooling potential of the system are investigated, compared with conventional loop thermosyphon. The results show that the evaporative cooling effect of the locations below the horizontal level of the nozzle is more significant due to gravity. With the increase of horizontal distance from the nozzle, the temperature decreases and then increases and the optimal distance is 200–400 mm. The heat capacity of LTEC increases with the increase of indoor and outdoor temperature difference while it decreases with the increase of humidity. Evaporative cooling can enhance the heat transfer of LTEC by 7%–33% compared with loop thermosyphon with conventional condenser, and this value is larger for smaller indoor and outdoor temperature difference and higher indoor temperature. LTEC can expand the annual free cooling time by 7%–14% compared with LTCC and the effect is more significant in regions with drier weather.

Suggested Citation

  • Shao, Shuangquan & Liu, Haichao & Zhang, Hainan & Tian, Changqing, 2019. "Experimental investigation on a loop thermosyphon with evaporative condenser for free cooling of data centers," Energy, Elsevier, vol. 185(C), pages 829-836.
  • Handle: RePEc:eee:energy:v:185:y:2019:i:c:p:829-836
    DOI: 10.1016/j.energy.2019.07.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219314367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.07.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Zongwei & Zhang, Yanqing & Meng, Xin & Liu, Qiankun & Li, Weiliang & Han, Yu & Zhang, Yanhong, 2016. "Simulation study on the operating characteristics of the heat pipe for combined evaporative cooling of computer room air-conditioning system," Energy, Elsevier, vol. 98(C), pages 15-25.
    2. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tian, Changqing, 2014. "Free cooling of data centers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 171-182.
    3. Kim, Min-Hwi & Ham, Sang-Woo & Park, Jun-Seok & Jeong, Jae-Weon, 2014. "Impact of integrated hot water cooling and desiccant-assisted evaporative cooling systems on energy savings in a data center," Energy, Elsevier, vol. 78(C), pages 384-396.
    4. Zhang, Penglei & Wang, Baolong & Shi, Wenxing & Li, Xianting, 2015. "Experimental investigation on two-phase thermosyphon loop with partially liquid-filled downcomer," Applied Energy, Elsevier, vol. 160(C), pages 10-17.
    5. Jouhara, Hussam & Meskimmon, Richard, 2014. "Heat pipe based thermal management systems for energy-efficient data centres," Energy, Elsevier, vol. 77(C), pages 265-270.
    6. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    7. Wang, Lei & Zhan, Changhong & Zhang, Jianli & Zhao, Xudong, 2019. "Optimization of the counter-flow heat and mass exchanger for M-Cycle indirect evaporative cooling assisted with entropy analysis," Energy, Elsevier, vol. 171(C), pages 1206-1216.
    8. Habibi Khalaj, Ali & Abdulla, Khalid & Halgamuge, Saman K., 2018. "Towards the stand-alone operation of data centers with free cooling and optimally sized hybrid renewable power generation and energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 451-472.
    9. Zhou, Yuanyuan & Zhang, Tao & Wang, Fang & Yu, Yanshun, 2018. "Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system," Energy, Elsevier, vol. 162(C), pages 299-308.
    10. Liu, Yuting & Yang, Xu & Li, Junming & Zhao, Xudong, 2018. "Energy savings of hybrid dew-point evaporative cooler and micro-channel separated heat pipe cooling systems for computer data centers," Energy, Elsevier, vol. 163(C), pages 629-640.
    11. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    12. Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
    13. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanbur, Baris Burak & Wu, Chenlong & Fan, Simiao & Duan, Fei, 2021. "System-level experimental investigations of the direct immersion cooling data center units with thermodynamic and thermoeconomic assessments," Energy, Elsevier, vol. 217(C).
    2. Luo, Zhenbing & He, Wei & Deng, Xiong & Zheng, Mu & Gao, Tianxiang & Li, Shiqing, 2023. "A compacted non-pump self-circulation spray cooling system based on dual synthetic jet referring to the principle of two-phase loop thermosyphon," Energy, Elsevier, vol. 263(PB).
    3. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    4. He, Zhiguang & Xi, Haonan & Wang, Jianmin & Li, Zhen & Cao, Jianguo & Li, Haibin, 2022. "Synergy optimization analysis of heat transfer performance and energy consumption in heat transfer process and its application in data centers," Applied Energy, Elsevier, vol. 307(C).
    5. Zhou, Jing & Kanbur, Baris Burak & Le, Duc Van & Tan, Rui & Duan, Fei, 2023. "Multi-criteria assessments of increasing supply air temperature in tropical data center," Energy, Elsevier, vol. 271(C).
    6. Han, Ouzhu & Ding, Tao & Mu, Chenggang & Jia, Wenhao & Ma, Zhoujun, 2023. "Waste heat reutilization and integrated demand response for decentralized optimization of data centers," Energy, Elsevier, vol. 264(C).
    7. Qin, Siyu & Liu, Yijia & Yang, Changming & Jin, Liwen & Yang, Chun & Meng, Xiangzhao, 2023. "Visualization study of co-existing boiling and condensation heat transfer in a confined flat thermosyphon," Energy, Elsevier, vol. 285(C).
    8. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    9. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    10. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    2. Xia, Guanghui & Zhuang, Dawei & Ding, Guoliang & Lu, Jingchao, 2020. "A quasi-three-dimensional distributed parameter model of micro-channel separated heat pipe applied for cooling telecommunication cabinets," Applied Energy, Elsevier, vol. 276(C).
    3. Cao, Jingyu & Hong, Xiaoqiang & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Pei, Gang & Leung, Michael K.H., 2020. "Performance characteristics of variable conductance loop thermosyphon for energy-efficient building thermal control," Applied Energy, Elsevier, vol. 275(C).
    4. Zhang, Hainan & Shao, Shuangquan & Xu, Hongbo & Zou, Huiming & Tang, Mingsheng & Tian, Changqing, 2017. "Simulation on the performance and free cooling potential of the thermosyphon mode in an integrated system of mechanical refrigeration and thermosyphon," Applied Energy, Elsevier, vol. 185(P2), pages 1604-1612.
    5. Zhang, Yiqi & Li, Mengyi & Dong, Jiaxiang & Zhang, Ce & Li, Xiuming & Han, Zongwei, 2023. "Study on the impacts of refrigerant leakage on the performance and reliability of datacenter composite air conditioning system," Energy, Elsevier, vol. 284(C).
    6. Wansheng Yang & Lin Yang & Junjie Ou & Zhongqi Lin & Xudong Zhao, 2019. "Investigation of Heat Management in High Thermal Density Communication Cabinet by a Rear Door Liquid Cooling System," Energies, MDPI, vol. 12(22), pages 1-25, November.
    7. Ding, Tao & Chen, Xiaoxuan & Cao, Hanwen & He, Zhiguang & Wang, Jianmin & Li, Zhen, 2021. "Principles of loop thermosyphon and its application in data center cooling systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    8. Zhang, Hainan & Shao, Shuangquan & Tian, Changqing & Zhang, Kunzhu, 2018. "A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 789-798.
    9. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Thermal management in legacy air-cooled data centers: An overview and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    10. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Li, Chao & Mao, Ruiyong & Wang, Yong & Zhang, Jun & Lan, Jiang & Zhang, Zujing, 2024. "Experimental study on direct evaporative cooling for free cooling of data centers," Energy, Elsevier, vol. 288(C).
    12. Chu, Wen-Xiao & Wang, Chi-Chuan, 2019. "A review on airflow management in data centers," Applied Energy, Elsevier, vol. 240(C), pages 84-119.
    13. Isazadeh, Amin & Ziviani, Davide & Claridge, David E., 2023. "Global trends, performance metrics, and energy reduction measures in datacom facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    14. Vesterlund, Mattias & Borisová, Stanislava & Emilsson, Ellinor, 2024. "Data center excess heat for mealworm farming, an applied analysis for sustainable protein production," Applied Energy, Elsevier, vol. 353(PA).
    15. Graamans, Luuk & Tenpierik, Martin & van den Dobbelsteen, Andy & Stanghellini, Cecilia, 2020. "Plant factories: Reducing energy demand at high internal heat loads through façade design," Applied Energy, Elsevier, vol. 262(C).
    16. Ni, Jiacheng & Bai, Xuelian, 2017. "A review of air conditioning energy performance in data centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 625-640.
    17. Han, Zongwei & Ji, Qiang & Wei, Haotian & Xue, Da & Sun, Xiaoqing & Zhang, Xueping & Li, Xiuming, 2020. "Simulation study on performance of data center air-conditioning system with novel evaporative condenser," Energy, Elsevier, vol. 210(C).
    18. Selorm Kwaku Anka & Nicholas Lamptey Boafo & Kwesi Mensah & Samuel Boahen & Kwang Ho Lee & Jong Min Choi, 2022. "Study on the Performance of a Newly Designed Cooling System Utilizing Dam Water for Internet Data Centers," Energies, MDPI, vol. 15(24), pages 1-19, December.
    19. Lan, Yun Cheng & Li, Cheng & Wang, Sui Lin, 2019. "Parabolic antenna snow melting and removal using waste heat from the transmitter room," Energy, Elsevier, vol. 181(C), pages 738-744.
    20. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:185:y:2019:i:c:p:829-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.