IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipbs0360544222026159.html
   My bibliography  Save this article

Experimental study on the effect of aftertreatment system on the energy flow pattern and emission reduction of a natural gas engine under world harmonized transient cycle

Author

Listed:
  • Pei, Zhongwen
  • Liu, Kaimin
  • Luo, Wusheng
  • Yang, Jing
  • Li, Yangtao

Abstract

To explore the effect of aftertreatment system (AS) on the energy flow pattern and emission reduction under transient conditions, the energy flow and emissions characteristics of a CNG engine with and without AS are experimentally investigated under world harmonized transient cycle. By comparing and analyzing the energy flow and emissions in both cases, the impact pattern of AS is revealed. Besides, the relationship between the emissions histories and engine behavior is explored thoroughly. The results show that the AS leads to higher coolant loss and lower other energy losses, but overall the thermal efficiency with AS is slightly improved. When considering the emissions, the engine load almost dominates the emissions. The conversion efficiency of CO, NOx and HC with AS is 95%, 93% and 88% respectively. The emissions are reduced significantly and can meet the China 6th stage national emission regulation. However, it is found that the AS sometimes has a negative impact on the CO emissions and HC emissions reduction and these phenomena are analyzed. Therefore, the energy flow analysis from the perspective of engine integrated with AS can clearly elucidate the aftertreatment behavior, which provides insight/direction to improve engine performance.

Suggested Citation

  • Pei, Zhongwen & Liu, Kaimin & Luo, Wusheng & Yang, Jing & Li, Yangtao, 2023. "Experimental study on the effect of aftertreatment system on the energy flow pattern and emission reduction of a natural gas engine under world harmonized transient cycle," Energy, Elsevier, vol. 263(PB).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026159
    DOI: 10.1016/j.energy.2022.125729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Desantes, José M. & Benajes, Jesús & García, Antonio & Monsalve-Serrano, Javier, 2014. "The role of the in-cylinder gas temperature and oxygen concentration over low load reactivity controlled compression ignition combustion efficiency," Energy, Elsevier, vol. 78(C), pages 854-868.
    2. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    3. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    4. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    5. Li, Menghan & Liu, Gengfei & Liu, Xiaori & Li, Zhijie & Zhang, Qiang & Shen, Boxiong, 2019. "Performance of a direct-injection natural gas engine with multiple injection strategies," Energy, Elsevier, vol. 189(C).
    6. Alfredas Rimkus & Tadas Vipartas & Donatas Kriaučiūnas & Jonas Matijošius & Tadas Ragauskas, 2022. "The Effect of Intake Valve Timing on Spark-Ignition Engine Performances Fueled by Natural Gas at Low Power," Energies, MDPI, vol. 15(2), pages 1-21, January.
    7. Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
    8. Thiruvengadam, Arvind & Besch, Marc & Padmanaban, Vishnu & Pradhan, Saroj & Demirgok, Berk, 2018. "Natural gas vehicles in heavy-duty transportation-A review," Energy Policy, Elsevier, vol. 122(C), pages 253-259.
    9. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    10. Li, Lifu & Zhang, Zhongbo, 2019. "Investigation on steam direct injection in a natural gas engine for fuel savings," Energy, Elsevier, vol. 183(C), pages 958-970.
    11. Girma T. Chala & Abd Rashid Abd Aziz & Ftwi Y. Hagos, 2018. "Natural Gas Engine Technologies: Challenges and Energy Sustainability Issue," Energies, MDPI, vol. 11(11), pages 1-44, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Junhao & Chen, Fan & Liu, Jingping & Guan, Jinhuan & Wang, Shuqian & Li, Yangyang, 2024. "Numerical study on the performance, combustion characteristics and energy flow distribution of gasoline-powered vehicle under synthetic actual driving test cycle," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
    2. Yang, Xiyu & Wang, Xiaoyan & Dong, Quan & Ni, Zuo & Song, Jingdong & Zhou, Tanqing, 2022. "Experimental study on the two-phase fuel transient injection characteristics of the high-pressure natural gas and diesel co-direct injection engine," Energy, Elsevier, vol. 243(C).
    3. Yang, Xiyu & Dong, Quan & Wang, Xiaoyan & Zhou, Tanqing & Wei, Daijun, 2023. "An experimental study on the needle valve motion characteristics of high pressure natural gas and diesel co-direct injector," Energy, Elsevier, vol. 265(C).
    4. Masurier, J.-B. & Foucher, F. & Dayma, G. & Dagaut, P., 2015. "Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion," Applied Energy, Elsevier, vol. 160(C), pages 566-580.
    5. Van Chien Pham & Jae-Hyuk Choi & Beom-Seok Rho & Jun-Soo Kim & Kyunam Park & Sang-Kyun Park & Van Vang Le & Won-Ju Lee, 2021. "A Numerical Study on the Combustion Process and Emission Characteristics of a Natural Gas-Diesel Dual-Fuel Marine Engine at Full Load," Energies, MDPI, vol. 14(5), pages 1-28, March.
    6. Hai, Tao & Hussein Kadir, Dler & Ghanbari, Afshin, 2023. "Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: Comprehensive statistical and operating analyses," Energy, Elsevier, vol. 276(C).
    7. Artur Jaworski & Hubert Kuszewski & Krzysztof Balawender & Paweł Woś & Krzysztof Lew & Mirosław Jaremcio, 2024. "Assessment of CH 4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio," Energies, MDPI, vol. 17(9), pages 1-18, April.
    8. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    9. M, Jerome Stanley & Varuvel, Edwin Geo & M, Leenus Jesu Martin, 2024. "Evaluating the potential performance of methane in lean conditions and examining the variations in combustion in a gasoline direct injection engine," Energy, Elsevier, vol. 302(C).
    10. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    11. Mikulski, Maciej & Balakrishnan, Praveen Ramanujam & Hunicz, Jacek, 2019. "Natural gas-diesel reactivity controlled compression ignition with negative valve overlap and in-cylinder fuel reforming," Applied Energy, Elsevier, vol. 254(C).
    12. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    13. Guardiola, C. & Pla, B. & Bares, P. & Barbier, A., 2018. "An analysis of the in-cylinder pressure resonance excitation in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1272-1279.
    14. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    15. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    16. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    17. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    18. Wang, Yifeng & Yao, Mingfa & Li, Tie & Zhang, Weijing & Zheng, Zunqing, 2016. "A parametric study for enabling reactivity controlled compression ignition (RCCI) operation in diesel engines at various engine loads," Applied Energy, Elsevier, vol. 175(C), pages 389-402.
    19. Pedrozo, Vinícius B. & May, Ian & Dalla Nora, Macklini & Cairns, Alasdair & Zhao, Hua, 2016. "Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load," Applied Energy, Elsevier, vol. 165(C), pages 166-182.
    20. Jin, Tai & Wu, Yunchao & Wang, Xujiang & Luo, Kai H. & Lu, Tianfeng & Luo, Kun & Fan, Jianren, 2019. "Ignition dynamics of DME/methane-air reactive mixing layer under reactivity controlled compression ignition conditions: Effects of cool flames," Applied Energy, Elsevier, vol. 249(C), pages 343-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pb:s0360544222026159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.