IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i9p2095-d1384327.html
   My bibliography  Save this article

Assessment of CH 4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio

Author

Listed:
  • Artur Jaworski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Hubert Kuszewski

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Krzysztof Balawender

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Paweł Woś

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Krzysztof Lew

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

  • Mirosław Jaremcio

    (Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszów, Poland)

Abstract

The results of diagnostic tests under steady-state speed conditions of an unloaded engine do not fully reflect the emissivity of vehicles adapted to run on natural gas. Therefore, it is reasonable to pay attention to the emissions performance of these vehicles under dynamic conditions. In this regard, the tests were carried out on a chassis dynamometer with the engine fueled by gasoline and natural gas. Due to the area of operation of natural gas vehicles being usually limited to urban areas, the urban phases of the NEDC (New European Driving Cycle) and WLTC (Worldwide harmonized Light-duty vehicles Test Cycle) were adapted. While CO 2 emissions are lower when fueled by natural gas, CH 4 emissions can be high, which is related to momentary changes in the composition of the combustible mixture. Although CH 4 emissions are higher when the engine runs on natural gas, the CO 2eq value is, depending on the driving cycle, about 15–25% lower than when running on petrol. Additionally, studies have shown that in engines adapted to run on CNG (compressed natural gas), it is advisable to consider the use of catalytic converters optimized to run on natural gas, as is the case with vehicles which are factory–adapted to run on CNG.

Suggested Citation

  • Artur Jaworski & Hubert Kuszewski & Krzysztof Balawender & Paweł Woś & Krzysztof Lew & Mirosław Jaremcio, 2024. "Assessment of CH 4 Emissions in a Compressed Natural Gas-Adapted Engine in the Context of Changes in the Equivalence Ratio," Energies, MDPI, vol. 17(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2095-:d:1384327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/9/2095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/9/2095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Sangho & Yi, Ui Hyung & Jang, Hyungjoon & Park, Cheolwoong & Kim, Changgi, 2021. "Evaluation of emission characteristics of a stoichiometric natural gas engine fueled with compressed natural gas and biomethane," Energy, Elsevier, vol. 220(C).
    2. Bielaczyc, Piotr & Woodburn, Joseph & Szczotka, Andrzej, 2014. "An assessment of regulated emissions and CO2 emissions from a European light-duty CNG-fueled vehicle in the context of Euro 6 emissions regulations," Applied Energy, Elsevier, vol. 117(C), pages 134-141.
    3. Mirosław Karczewski & Grzegorz Szamrej & Janusz Chojnowski, 2022. "Experimental Assessment of the Impact of Replacing Diesel Fuel with CNG on the Concentration of Harmful Substances in Exhaust Gases in a Dual Fuel Diesel Engine," Energies, MDPI, vol. 15(13), pages 1-26, June.
    4. Andrew Huonder & Daniel Olsen, 2023. "Methane Emission Reduction Technologies for Natural Gas Engines: A Review," Energies, MDPI, vol. 16(20), pages 1-18, October.
    5. Pan & Lei Tao & Kang Sun & Levi M. Golston & David J. Miller & Tong Zhu & Yue Qin & Yan Zhang & Denise L. Mauzerall & Mark A. Zondlo, 2020. "Methane emissions from natural gas vehicles in China," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M, Jerome Stanley & Varuvel, Edwin Geo & M, Leenus Jesu Martin, 2024. "Evaluating the potential performance of methane in lean conditions and examining the variations in combustion in a gasoline direct injection engine," Energy, Elsevier, vol. 302(C).
    2. Kagiri, Charles & Wanjiru, Evan M. & Zhang, Lijun & Xia, Xiaohua, 2018. "Optimized response to electricity time-of-use tariff of a compressed natural gas fuelling station," Applied Energy, Elsevier, vol. 222(C), pages 244-256.
    3. Byun, Jaewon & Han, Jeehoon, 2021. "Economically feasible production of green methane from vegetable and fruit-rich food waste," Energy, Elsevier, vol. 235(C).
    4. Xu, Xiao & Hu, Weihao & Du, Yuefang & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2020. "Robust chance-constrained gas management for a standalone gas supply system based on wind energy," Energy, Elsevier, vol. 212(C).
    5. Hang Thi Thanh Vu & Jeonghan Ko, 2024. "Effective Modeling of CO 2 Emissions for Light-Duty Vehicles: Linear and Non-Linear Models with Feature Selection," Energies, MDPI, vol. 17(7), pages 1-23, March.
    6. Kazimierz Lejda & Artur Jaworski & Maksymilian Mądziel & Krzysztof Balawender & Adam Ustrzycki & Danylo Savostin-Kosiak, 2021. "Assessment of Petrol and Natural Gas Vehicle Carbon Oxides Emissions in the Laboratory and On-Road Tests," Energies, MDPI, vol. 14(6), pages 1-19, March.
    7. Krzysztof Biernat & Izabela Samson-Bręk & Zdzisław Chłopek & Marlena Owczuk & Anna Matuszewska, 2021. "Assessment of the Environmental Impact of Using Methane Fuels to Supply Internal Combustion Engines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    8. Liang, Yong-Liang & Guo, Chen-Xian & Li, Ke-Jun & Li, Ming-Yang, 2021. "Economic scheduling of compressed natural gas main station considering critical peak pricing," Applied Energy, Elsevier, vol. 292(C).
    9. Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
    10. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    11. Felipe Solferini de Carvalho & Luiz Carlos Bevilaqua dos Santos Reis & Pedro Teixeira Lacava & Fernando Henrique Mayworm de Araújo & João Andrade de Carvalho Jr., 2023. "Substitution of Natural Gas by Biomethane: Operational Aspects in Industrial Equipment," Energies, MDPI, vol. 16(2), pages 1-19, January.
    12. Michel Noussan, 2023. "The Use of Biomethane in Internal Combustion Engines for Public Transport Decarbonization: A Case Study," Energies, MDPI, vol. 16(24), pages 1-18, December.
    13. Okunlola, Ayodeji & Davis, Matthew & Kumar, Amit, 2023. "Assessing the cost competitiveness of electrolytic hydrogen production from small modular nuclear reactor-based power plants: A price-following perspective," Applied Energy, Elsevier, vol. 346(C).
    14. Kirsi Spoof-Tuomi & Hans Arvidsson & Olav Nilsson & Seppo Niemi, 2022. "Real-Driving Emissions of an Aging Biogas-Fueled City Bus," Clean Technol., MDPI, vol. 4(4), pages 1-18, October.
    15. Jia, Weidong & Gong, Chengzhu & Pan, Kai & Yu, Shiwei, 2023. "Potential changes of regional natural gas market in China amidst liberalization: A mixed complementarity equilibrium simulation in 2030," Energy, Elsevier, vol. 284(C).
    16. Mirosław Karczewski & Grzegorz Szamrej, 2023. "Experimental Evaluation of the Effect of Replacing Diesel Fuel by CNG on the Emission of Harmful Exhaust Gas Components and Emission Changes in a Dual-Fuel Engine," Energies, MDPI, vol. 16(1), pages 1-32, January.
    17. Yang, Xiyu & Wang, Xiaoyan & Dong, Quan & Ni, Zuo & Song, Jingdong & Zhou, Tanqing, 2022. "Experimental study on the two-phase fuel transient injection characteristics of the high-pressure natural gas and diesel co-direct injection engine," Energy, Elsevier, vol. 243(C).
    18. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    19. Ouyang, Minggao & Zhang, Weilin & Wang, Enhua & Yang, Fuyuan & Li, Jianqiu & Li, Zhongyan & Yu, Ping & Ye, Xiao, 2015. "Performance analysis of a novel coaxial power-split hybrid powertrain using a CNG engine and supercapacitors," Applied Energy, Elsevier, vol. 157(C), pages 595-606.
    20. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2095-:d:1384327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.