IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317783.html
   My bibliography  Save this article

The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle

Author

Listed:
  • Fu, Jianqin
  • Deng, Banglin
  • Liu, Xiaoqiang
  • Shu, Jun
  • Xu, Ying
  • Liu, Jingping

Abstract

In this study, the THC, CO/CO2 and NOx emissions were investigated by experimental measurements on a twin-spark sporting motorcycle under real-world driving. The emissions at two typical engine steady-state operating points were also added for comparison. Meanwhile, the engine working status was monitored during the whole trip. The results indicate that the small throttle opening and the rich air/fuel ratio make the very low engine combustion efficiency during cold-start phase, which leads to higher THC and CO emissions. During this stage, the CO2 is also high due to the absolutely high fuel consumption rather than the high combustion efficiency, due to the low NOx emission. By comparing this studied engine to others, the direction to improve the transient response especially under low loads was found. Compared with steady-state operation, both CO and CO2 during transient driving are lower, because at transient driving the combustion temperature is lower, leading to lower products amounts for those CO precursor (especially for HCO). The lower combustion temperature also leads to lower NOx emission, and the incomplete combustion leads to higher THC emission at cycle driving. In a word, the lower volume efficiency and delay ignition timing result in poorer combustion status during transient driving.

Suggested Citation

  • Fu, Jianqin & Deng, Banglin & Liu, Xiaoqiang & Shu, Jun & Xu, Ying & Liu, Jingping, 2020. "The experimental study on transient emissions and engine behaviors of a sporting motorcycle under World Motorcycle Test Cycle," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317783
    DOI: 10.1016/j.energy.2020.118670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muslim, Mohd Taufiq & Selamat, Hazlina & Alimin, Ahmad Jais & Mohd Rohi, Noorfaizah & Hushim, Mohd Faisal, 2014. "A review on retrofit fuel injection technology for small carburetted motorcycle engines towards lower fuel consumption and cleaner exhaust emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 279-284.
    2. Chen, Zheng & Zhang, Fan & Xu, Boya & Zhang, Quanchang & Liu, Jingping, 2017. "Influence of methane content on a LNG heavy-duty engine with high compression ratio," Energy, Elsevier, vol. 128(C), pages 329-336.
    3. Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
    4. Bougrine, S. & Richard, S. & Michel, J.-B. & Veynante, D., 2014. "Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach," Applied Energy, Elsevier, vol. 113(C), pages 1199-1215.
    5. Shim, Euijoon & Park, Hyunwook & Bae, Choongsik, 2018. "Intake air strategy for low HC and CO emissions in dual-fuel (CNG-diesel) premixed charge compression ignition engine," Applied Energy, Elsevier, vol. 225(C), pages 1068-1077.
    6. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    7. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    8. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    9. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    10. İlhak, Mehmet İlhan & Tangöz, Selim & Akansu, Selahaddin Orhan & Kahraman, Nafiz, 2019. "An experimental investigation of the use of gasoline-acetylene mixtures at different excess air ratios in an SI engine," Energy, Elsevier, vol. 175(C), pages 434-444.
    11. Venu, Harish & Subramani, Lingesan & Raju, V. Dhana, 2019. "Emission reduction in a DI diesel engine using exhaust gas recirculation (EGR) of palm biodiesel blended with TiO2 nano additives," Renewable Energy, Elsevier, vol. 140(C), pages 245-263.
    12. Cox, Brian L. & Mutel, Christopher L., 2018. "The environmental and cost performance of current and future motorcycles," Applied Energy, Elsevier, vol. 212(C), pages 1013-1024.
    13. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Zhongwen & Liu, Kaimin & Luo, Wusheng & Yang, Jing & Li, Yangtao, 2023. "Experimental study on the effect of aftertreatment system on the energy flow pattern and emission reduction of a natural gas engine under world harmonized transient cycle," Energy, Elsevier, vol. 263(PB).
    2. Barouch Giechaskiel, 2020. "Gaseous and Particulate Emissions of a Euro 4 Motorcycle and Effect of Driving Style and Open or Closed Sampling Configuration," Sustainability, MDPI, vol. 12(21), pages 1-12, November.
    3. Piotr Bielaczyc & Wojciech Honkisz & Joseph Woodburn & Andrzej Szczotka & Fabrizio Forloni & Dominique Lesueur & Barouch Giechaskiel, 2021. "Inter-Comparison of Particle and Gaseous Pollutant Emissions of a Euro 4 Motorcycle at Two Laboratories," Energies, MDPI, vol. 14(23), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    2. Pei, Zhongwen & Liu, Kaimin & Luo, Wusheng & Yang, Jing & Li, Yangtao, 2023. "Experimental study on the effect of aftertreatment system on the energy flow pattern and emission reduction of a natural gas engine under world harmonized transient cycle," Energy, Elsevier, vol. 263(PB).
    3. Banglin Deng & Weijiao Yu & Lili Zhou & Chengqi Sun, 2023. "A Comparative Investigation of the Emissions of a Heavy-Duty Diesel Engine under World Harmonized Transient Cycle and Road Spectrum Cycle," Energies, MDPI, vol. 17(1), pages 1-18, December.
    4. Xi, Haoran & Fu, Jianqin & Zhou, Feng & Yu, Juan & Liu, Jingping & Meng, Zhongwei, 2023. "Experimental and numerical studies of thermal power conversion and energy flow under high-compression ratios of a liquid methane engine (LME)," Energy, Elsevier, vol. 284(C).
    5. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Ashraf Elfasakhany, 2021. "State of Art of Using Biofuels in Spark Ignition Engines," Energies, MDPI, vol. 14(3), pages 1-26, February.
    7. Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.
    8. Chen, Yangyang & Liu, Aodong & Deng, Banglin & Xu, Zhenxin & Feng, Renhua & Fu, Jianqin & Liu, Xiaoqiang & Zhang, Guoqing & Zhou, Lili, 2019. "The influences of ignition modes on the performances for a motorcycle single cylinder gasoline engine at lean burn operation: Looking inside interaction between flame front and turbulence," Energy, Elsevier, vol. 179(C), pages 528-541.
    9. Lee, Cho-Yu & Vo, Dai-Qui, 2021. "Influence of cold-start time reduction on scooter emissions and fuel consumption over WMTC cycle," Energy, Elsevier, vol. 231(C).
    10. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    11. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    12. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    13. Jingrui Li & Jietuo Wang & Teng Liu & Jingjin Dong & Bo Liu & Chaohui Wu & Ying Ye & Hu Wang & Haifeng Liu, 2019. "An Investigation of the Influence of Gas Injection Rate Shape on High-Pressure Direct-Injection Natural Gas Marine Engines," Energies, MDPI, vol. 12(13), pages 1-18, July.
    14. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    15. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    16. Yuan, Zhipeng & Fu, Jianqin & Liu, Qi & Ma, Yinjie & Zhan, Zhangsong, 2018. "Quantitative study on influence factors of power performance of variable valve timing (VVT) engines and correction of its governing equation," Energy, Elsevier, vol. 157(C), pages 314-326.
    17. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    18. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    19. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    20. Djouadi, Amel & Bentahar, Fatiha, 2016. "Combustion study of a spark-ignition engine from pressure cycles," Energy, Elsevier, vol. 101(C), pages 211-217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.