IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipas0360544222020588.html
   My bibliography  Save this article

Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses

Author

Listed:
  • Scharrer, Daniel
  • Bazan, Peter
  • Pruckner, Marco
  • German, Reinhard

Abstract

The storage of electric energy is considered to be a crucial element for grids with a high share of renewable energy generation. Carnot Batteries are a promising technology regarding sector coupling or peak shaving applications. In the domestic sector, current research focuses on an application of Carnot Battery systems in single houses with solar power to improve their self-sufficiency and reduce expenditures. However, due to the non-cellular structure (in contrast to li-ion) economies of scale contribute significantly to the viability of the technology. This is why a joint analysis of entire housing communities is necessary, as focusing only on one house neglects possibilities that arise with larger Carnot Battery systems. The Carnot Battery system is modelled after a pilot plant as a reversible heat pump (20 kW)/organic Rankine cycle (7–13 kW) system coupled with a sensible hot water storage. Operation data from a local energy supplier is used to validate the heat storage component of the simulation model, while the thermal machines are based on simulated and experimental data of the pilot plant. An extensive and comprehensive parameter variation is done to find possible application scenarios of the pilot plant and evaluate its financial viability in a community of varying number of houses. Major findings are, that the possible savings the pilot plant Carnot Battery can achieve in such a community depends on the market conditions considered and that it is not financial under current German market conditions. Varying the feed-in tariff and heat costs showcases the limits of a financial application. Based on current projections for the feed-in tariff, an application for a community of 10–30 houses becomes financial in the near future and saves more than 100 € on electricity costs per house per year, with an amortization period of 14 years depending on interest rates.

Suggested Citation

  • Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020588
    DOI: 10.1016/j.energy.2022.125166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steinmann, Wolf-Dieter & Bauer, Dan & Jockenhöfer, Henning & Johnson, Maike, 2019. "Pumped thermal energy storage (PTES) as smart sector-coupling technology for heat and electricity," Energy, Elsevier, vol. 183(C), pages 185-190.
    2. Dumont, O. & Lemort, V., 2020. "Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery," Energy, Elsevier, vol. 211(C).
    3. Daniel Steger & Christoph Regensburger & Jenny Pham & Eberhard Schlücker, 2021. "Heat Exchangers in Carnot Batteries: Condensation and Evaporation in a Reversible Device," Energies, MDPI, vol. 14(18), pages 1-14, September.
    4. Eppinger, Bernd & Zigan, Lars & Karl, Jürgen & Will, Stefan, 2020. "Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids," Applied Energy, Elsevier, vol. 280(C).
    5. Bernd Eppinger & Mustafa Muradi & Daniel Scharrer & Lars Zigan & Peter Bazan & Reinhard German & Stefan Will, 2021. "Simulation of the Part Load Behavior of Combined Heat Pump-Organic Rankine Cycle Systems," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    7. Daniel Scharrer & Bernd Eppinger & Pascal Schmitt & Johan Zenk & Peter Bazan & Jürgen Karl & Stefan Will & Marco Pruckner & Reinhard German, 2020. "Life Cycle Assessment of a Reversible Heat Pump–Organic Rankine Cycle–Heat Storage System with Geothermal Heat Supply," Energies, MDPI, vol. 13(12), pages 1-19, June.
    8. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2018. "Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage," Energy, Elsevier, vol. 156(C), pages 240-249.
    9. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    10. Steinmann, W.D., 2014. "The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage," Energy, Elsevier, vol. 69(C), pages 543-552.
    11. Sebastian Staub & Peter Bazan & Konstantinos Braimakis & Dominik Müller & Christoph Regensburger & Daniel Scharrer & Bernd Schmitt & Daniel Steger & Reinhard German & Sotirios Karellas & Marco Pruckne, 2018. "Reversible Heat Pump–Organic Rankine Cycle Systems for the Storage of Renewable Electricity," Energies, MDPI, vol. 11(6), pages 1-17, May.
    12. Steger, Daniel & Regensburger, Christoph & Eppinger, Bernd & Will, Stefan & Karl, Jürgen & Schlücker, Eberhard, 2020. "Design aspects of a reversible heat pump - Organic rankine cycle pilot plant for energy storage," Energy, Elsevier, vol. 208(C).
    13. Quiggin, Daniel & Cornell, Sarah & Tierney, Michael & Buswell, Richard, 2012. "A simulation and optimisation study: Towards a decentralised microgrid, using real world fluctuation data," Energy, Elsevier, vol. 41(1), pages 549-559.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haojie Chen & Man-Hoe Kim, 2022. "Thermodynamic Analysis and Working Fluid Selection of a Novel Cogeneration System Based on a Regenerative Organic Flash Cycle," Energies, MDPI, vol. 15(21), pages 1-25, October.
    2. Alsagri, Ali Sulaiman, 2023. "An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization," Renewable Energy, Elsevier, vol. 210(C), pages 375-385.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Eppinger, Bernd & Steger, Daniel & Regensburger, Christoph & Karl, Jürgen & Schlücker, Eberhard & Will, Stefan, 2021. "Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant," Applied Energy, Elsevier, vol. 288(C).
    4. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    5. Frate, Guido Francesco & Baccioli, Andrea & Bernardini, Leonardo & Ferrari, Lorenzo, 2022. "Assessment of the off-design performance of a solar thermally-integrated pumped-thermal energy storage," Renewable Energy, Elsevier, vol. 201(P1), pages 636-650.
    6. Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
    7. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    8. José Ignacio Linares & Arturo Martín-Colino & Eva Arenas & María José Montes & Alexis Cantizano & José Rubén Pérez-Domínguez, 2023. "Carnot Battery Based on Brayton Supercritical CO 2 Thermal Machines Using Concentrated Solar Thermal Energy as a Low-Temperature Source," Energies, MDPI, vol. 16(9), pages 1-24, May.
    9. Steger, Daniel & Feist, Michael & Schlücker, Eberhard, 2022. "Using a screw-type machine as reversible compressor–expander in a Carnot Battery: An analytical study towards efficiency," Applied Energy, Elsevier, vol. 316(C).
    10. Eppinger, Bernd & Zigan, Lars & Karl, Jürgen & Will, Stefan, 2020. "Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids," Applied Energy, Elsevier, vol. 280(C).
    11. Zhang, Yanchao & Xie, Zhenzhen, 2022. "Thermodynamic efficiency and bounds of pumped thermal electricity storage under whole process ecological optimization," Renewable Energy, Elsevier, vol. 188(C), pages 711-720.
    12. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    13. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    14. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    15. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    16. Koide, Hiroaki & Kurniawan, Ade & Takahashi, Tatsuya & Kawaguchi, Takahiro & Sakai, Hiroki & Sato, Yusuke & Chiu, Justin NW. & Nomura, Takahiro, 2022. "Performance analysis of packed bed latent heat storage system for high-temperature thermal energy storage using pellets composed of micro-encapsulated phase change material," Energy, Elsevier, vol. 238(PC).
    17. Emanuele Nadalon & Ronelly De Souza & Melchiorre Casisi & Mauro Reini, 2023. "Part-Load Energy Performance Assessment of a Pumped Thermal Energy Storage System for an Energy Community," Energies, MDPI, vol. 16(15), pages 1-30, July.
    18. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2023. "Operating mode of Brayton-cycle-based pumped thermal electricity storage system: Constant compression ratio or constant rotational speed?," Applied Energy, Elsevier, vol. 343(C).
    19. Blanquiceth, J. & Cardemil, J.M. & Henríquez, M. & Escobar, R., 2023. "Thermodynamic evaluation of a pumped thermal electricity storage system integrated with large-scale thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    20. Kosmadakis, George & Neofytou, Panagiotis, 2022. "Reversible high-temperature heat pump/ORC for waste heat recovery in various ships: A techno-economic assessment," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pa:s0360544222020588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.