IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp375-385.html
   My bibliography  Save this article

An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization

Author

Listed:
  • Alsagri, Ali Sulaiman

Abstract

Research on large-scale energy storage systems has so far been very dedicatedly focused on electricity storage. Even for thermal energy-driven technologies, so-called Carnot batteries, larger electricity output, and higher power-to-power efficiency have been the major concerns. On the other hand, energy storage technologies are mainly useful for helping more renewable energy deployment for which recent studies show that most of the energy sectors are going through a smooth and continuous transition towards sustainability except for the industrial heating and cooling sectors. Therefore, developing energy storage solutions that can potentially contribute to this sector will be precious. This study proposes a multi-generating solar-assisted molten-salt-driven Carnot battery that is used for storing excess electricity of a PV farm in Saudi Arabia and delivering power for grid balancing, steam for process heating, as well as space heating/cooling for several industrial factories. The article presents a detailed techno-economic analysis of the system after making the configuration optimized based on multi-objective optimization techniques. The results show that such a multi-generating solar-assisted molten-salt-driven Carnot battery in the optimized configuration may result in power-to-power, power-to-process heat, and overall efficiencies of 26.82%, 55.78%, and 82.6%. With these performance factors, using standard global prices for electricity and heating, with a process heating cost of higher than 10.15 c$/kWh (which is very realistic), the system will outperform only power-generating Carnot batteries.

Suggested Citation

  • Alsagri, Ali Sulaiman, 2023. "An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization," Renewable Energy, Elsevier, vol. 210(C), pages 375-385.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:375-385
    DOI: 10.1016/j.renene.2023.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    2. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    3. Bauer, Thomas & Pfleger, Nicole & Breidenbach, Nils & Eck, Markus & Laing, Doerte & Kaesche, Stefanie, 2013. "Material aspects of Solar Salt for sensible heat storage," Applied Energy, Elsevier, vol. 111(C), pages 1114-1119.
    4. Arabkoohsar, A. & Andresen, G.B., 2017. "Dynamic energy, exergy and market modeling of a High Temperature Heat and Power Storage System," Energy, Elsevier, vol. 126(C), pages 430-443.
    5. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A. & Nejlaoui, Mohamed, 2021. "Techno-economic evaluation of an off-grid health clinic considering the current and future energy challenges: A rural case study," Renewable Energy, Elsevier, vol. 169(C), pages 34-52.
    7. Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).
    8. Dumont, O. & Lemort, V., 2020. "Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery," Energy, Elsevier, vol. 211(C).
    9. Houssainy, Sammy & Janbozorgi, Mohammad & Ip, Peggy & Kavehpour, Pirouz, 2018. "Thermodynamic analysis of a high temperature hybrid compressed air energy storage (HTH-CAES) system," Renewable Energy, Elsevier, vol. 115(C), pages 1043-1054.
    10. Li, Gang, 2016. "Sensible heat thermal storage energy and exergy performance evaluations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 897-923.
    11. Eppinger, Bernd & Steger, Daniel & Regensburger, Christoph & Karl, Jürgen & Schlücker, Eberhard & Will, Stefan, 2021. "Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant," Applied Energy, Elsevier, vol. 288(C).
    12. Arabkoohsar, A. & Andresen, G.B., 2017. "Design and analysis of the novel concept of high temperature heat and power storage," Energy, Elsevier, vol. 126(C), pages 21-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qing, Xia, 2024. "Solar-driven multi-generation system: Thermoeconomic and environmental optimization for power, cooling, and liquefied hydrogen production," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    2. Arabkoohsar, A. & Andresen, G.B., 2017. "Thermodynamics and economic performance comparison of three high-temperature hot rock cavern based energy storage concepts," Energy, Elsevier, vol. 132(C), pages 12-21.
    3. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    4. Arabkoohsar, A. & Dremark-Larsen, M. & Lorentzen, R. & Andresen, G.B., 2017. "Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity," Applied Energy, Elsevier, vol. 205(C), pages 602-614.
    5. Sadi, Meisam & Arabkoohsar, Ahmad, 2020. "Exergy, economic and environmental analysis of a solar-assisted cold supply machine for district energy systems," Energy, Elsevier, vol. 206(C).
    6. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad, 2020. "Optimal operating strategy of high-temperature heat and power storage system coupled with a wind farm in energy market," Energy, Elsevier, vol. 210(C).
    7. Arabkoohsar, A. & Andresen, G.B., 2017. "Design and analysis of the novel concept of high temperature heat and power storage," Energy, Elsevier, vol. 126(C), pages 21-33.
    8. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    9. Arabkoohsar, Ahmad & Rahrabi, Hamid Reza & Alsagri, Ali Sulaiman & Alrobaian, Abdulrahman A., 2020. "Impact of Off-design operation on the effectiveness of a low-temperature compressed air energy storage system," Energy, Elsevier, vol. 197(C).
    10. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    11. Chang Liu & Mao-Song Cheng & Bing-Chen Zhao & Zhi-Min Dai, 2017. "A Wind Power Plant with Thermal Energy Storage for Improving the Utilization of Wind Energy," Energies, MDPI, vol. 10(12), pages 1-20, December.
    12. Hussam, Wisam K. & Rahbari, Hamid Reza & Arabkoohsar, Ahmad, 2020. "Off-design operation analysis of air-based high-temperature heat and power storage," Energy, Elsevier, vol. 196(C).
    13. Pottie, Daniel L.F. & Ferreira, Rafael A.M. & Maia, Thales A.C. & Porto, Matheus P., 2020. "An alternative sequence of operation for Pumped-Hydro Compressed Air Energy Storage (PH-CAES) systems," Energy, Elsevier, vol. 191(C).
    14. José Ignacio Linares & Arturo Martín-Colino & Eva Arenas & María José Montes & Alexis Cantizano & José Rubén Pérez-Domínguez, 2023. "Carnot Battery Based on Brayton Supercritical CO 2 Thermal Machines Using Concentrated Solar Thermal Energy as a Low-Temperature Source," Energies, MDPI, vol. 16(9), pages 1-24, May.
    15. Canpolat Tosun, Demet & Açıkkalp, Emin & Altuntas, Onder & Hepbasli, Arif & Palmero-Marrero, Ana I. & Borge-Diez, David, 2023. "Dynamic performance and sustainability assessment of a PV driven Carnot battery," Energy, Elsevier, vol. 278(C).
    16. Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
    17. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    18. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    19. Sadi, M. & Arabkoohsar, A., 2019. "Exergoeconomic analysis of a combined solar-waste driven power plant," Renewable Energy, Elsevier, vol. 141(C), pages 883-893.
    20. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:375-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.