IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v371y2024ics0306261924010766.html
   My bibliography  Save this article

Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage

Author

Listed:
  • Wu, Ding
  • Ma, Bo
  • Zhang, Ji
  • Chen, Yanqi
  • Shen, Feifan
  • Chen, Xun
  • Wen, Chuang
  • Yang, Yan

Abstract

Global issues such as the energy crisis and carbon emissions impulse the development of waste heat recovery and energy storage technologies. In most practical industrial scenarios, the electricity supply and consumption cannot be perfectly matched and effective utilization of waste heat is in urgent need. In the present study, we develop a mathematical model to evaluate the thermally integrated pumped thermal electricity storage (TI-PTES) system to achieve off-peak electricity storage along with low-grade waste heat recovery. A double-layer optimization for screening working fluid pairs with high round-trip efficiency is carried out from 24 fluids of the heat pump and 21 fluids of the Organic Rankine cycle (ORC). In the first-layer multi-objective optimization, 3 types of working fluid pair combination strategies are compared and the great improvement of round-trip efficiency by using zeotropic fluids is proved. Among 7 energy storage temperatures covering from 393.15 K to 423.15 K with an increment interval of 5 K, the highest round-trip efficiency of 101.29% is achieved by adopting the zeotropic fluid pair [90Diethyl ether_10Pentane - 80Butane_20Pentane] at 398.15 K. Furthermore, in the second-layer single-objective optimization, the thermo-economic performance indicators of TI-PTES is evaluated and compared under different designing weighting factor groups, which effectively contributes to the screening of working fluids according to designer's trade-off. Finally, through varying energy storage temperatures and designing weighting factors, optimal working fluid pair recommendations including pure fluids and zeotropic ones were proposed to the fluid selection of TI-PTES.

Suggested Citation

  • Wu, Ding & Ma, Bo & Zhang, Ji & Chen, Yanqi & Shen, Feifan & Chen, Xun & Wen, Chuang & Yang, Yan, 2024. "Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage," Applied Energy, Elsevier, vol. 371(C).
  • Handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010766
    DOI: 10.1016/j.apenergy.2024.123693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924010766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Dumont, O. & Lemort, V., 2020. "Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery," Energy, Elsevier, vol. 211(C).
    3. Giménez-Prades, P. & Navarro-Esbrí, J. & Arpagaus, C. & Fernández-Moreno, A. & Mota-Babiloni, A., 2022. "Novel molecules as working fluids for refrigeration, heat pump and organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Heberle, Florian & Preißinger, Markus & Brüggemann, Dieter, 2012. "Zeotropic mixtures as working fluids in Organic Rankine Cycles for low-enthalpy geothermal resources," Renewable Energy, Elsevier, vol. 37(1), pages 364-370.
    5. Eppinger, Bernd & Steger, Daniel & Regensburger, Christoph & Karl, Jürgen & Schlücker, Eberhard & Will, Stefan, 2021. "Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant," Applied Energy, Elsevier, vol. 288(C).
    6. Eppinger, Bernd & Zigan, Lars & Karl, Jürgen & Will, Stefan, 2020. "Pumped thermal energy storage with heat pump-ORC-systems: Comparison of latent and sensible thermal storages for various fluids," Applied Energy, Elsevier, vol. 280(C).
    7. Guo, Hao & Gong, Maoqiong & Qin, Xiaoyu, 2019. "Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump," Applied Energy, Elsevier, vol. 237(C), pages 338-352.
    8. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    9. Jockenhöfer, Henning & Steinmann, Wolf-Dieter & Bauer, Dan, 2018. "Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration," Energy, Elsevier, vol. 145(C), pages 665-676.
    10. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Nan, Sibo & Zhou, Ming & Li, Gengyin, 2018. "Optimal residential community demand response scheduling in smart grid," Applied Energy, Elsevier, vol. 210(C), pages 1280-1289.
    12. Wu, Di & Hu, Bin & Wang, R.Z., 2021. "Vapor compression heat pumps with pure Low-GWP refrigerants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Grauberger, Alex & Young, Derek & Bandhauer, Todd, 2022. "Experimental validation of an organic rankine-vapor compression cooling cycle using low GWP refrigerant R1234ze(E)," Applied Energy, Elsevier, vol. 307(C).
    14. Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
    15. Zühlsdorf, Benjamin & Jensen, Jonas Kjær & Cignitti, Stefano & Madsen, Claus & Elmegaard, Brian, 2018. "Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides," Energy, Elsevier, vol. 153(C), pages 650-660.
    16. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    17. Mejia, Cristian & Kajikawa, Yuya, 2020. "Emerging topics in energy storage based on a large-scale analysis of academic articles and patents," Applied Energy, Elsevier, vol. 263(C).
    18. Xi, Huan & Li, Ming-Jia & Xu, Chao & He, Ya-Ling, 2013. "Parametric optimization of regenerative organic Rankine cycle (ORC) for low grade waste heat recovery using genetic algorithm," Energy, Elsevier, vol. 58(C), pages 473-482.
    19. Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2022. "Technical and economic analysis of Brayton-cycle-based pumped thermal electricity storage systems with direct and indirect thermal energy storage," Energy, Elsevier, vol. 239(PC).
    20. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    21. Steger, Daniel & Regensburger, Christoph & Eppinger, Bernd & Will, Stefan & Karl, Jürgen & Schlücker, Eberhard, 2020. "Design aspects of a reversible heat pump - Organic rankine cycle pilot plant for energy storage," Energy, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitzer, Maximilian & Müller, Dominik & Karl, Jürgen, 2022. "Two-phase expansion processes in heat pump – ORC systems (Carnot batteries) with volumetric machines for enhanced off-design efficiency," Renewable Energy, Elsevier, vol. 199(C), pages 720-732.
    2. Zhao, Yongliang & Song, Jian & Liu, Ming & Zhao, Yao & Olympios, Andreas V. & Sapin, Paul & Yan, Junjie & Markides, Christos N., 2022. "Thermo-economic assessments of pumped-thermal electricity storage systems employing sensible heat storage materials," Renewable Energy, Elsevier, vol. 186(C), pages 431-456.
    3. Scharrer, Daniel & Bazan, Peter & Pruckner, Marco & German, Reinhard, 2022. "Simulation and analysis of a Carnot Battery consisting of a reversible heat pump/organic Rankine cycle for a domestic application in a community with varying number of houses," Energy, Elsevier, vol. 261(PA).
    4. Eppinger, Bernd & Steger, Daniel & Regensburger, Christoph & Karl, Jürgen & Schlücker, Eberhard & Will, Stefan, 2021. "Carnot battery: Simulation and design of a reversible heat pump-organic Rankine cycle pilot plant," Applied Energy, Elsevier, vol. 288(C).
    5. Wang, Penglai & Li, Qibin & Wang, Shukun & Hui, Bo, 2024. "A multi-generation system with integrated solar energy, combining energy storage, cooling, heat, and hydrogen production functionalities: Mathematical model and thermo-economic analysis," Renewable Energy, Elsevier, vol. 230(C).
    6. Carro, A. & Chacartegui, R. & Ortiz, C. & Carneiro, J. & Becerra, J.A., 2022. "Integration of energy storage systems based on transcritical CO2: Concept of CO2 based electrothermal energy and geological storage," Energy, Elsevier, vol. 238(PA).
    7. José Ignacio Linares & Arturo Martín-Colino & Eva Arenas & María José Montes & Alexis Cantizano & José Rubén Pérez-Domínguez, 2023. "Carnot Battery Based on Brayton Supercritical CO 2 Thermal Machines Using Concentrated Solar Thermal Energy as a Low-Temperature Source," Energies, MDPI, vol. 16(9), pages 1-24, May.
    8. Ameen, Muhammad Tahir & Ma, Zhiwei & Smallbone, Andrew & Norman, Rose & Roskilly, Anthony Paul, 2023. "Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency," Applied Energy, Elsevier, vol. 333(C).
    9. Xue, X.J. & Zhao, C.Y., 2023. "Transient behavior and thermodynamic analysis of Brayton-like pumped-thermal electricity storage based on packed-bed latent heat/cold stores," Applied Energy, Elsevier, vol. 329(C).
    10. Sui, Yunren & Lin, Haosheng & Ding, Zhixiong & Li, Fuxiang & Sui, Zengguang & Wu, Wei, 2024. "Compact, efficient, and affordable absorption Carnot battery for long-term renewable energy storage," Applied Energy, Elsevier, vol. 357(C).
    11. Alsagri, Ali Sulaiman, 2023. "An innovative design of solar-assisted carnot battery for multigeneration of power, cooling, and process heating: Techno-economic analysis and optimization," Renewable Energy, Elsevier, vol. 210(C), pages 375-385.
    12. Bernd Eppinger & Mustafa Muradi & Daniel Scharrer & Lars Zigan & Peter Bazan & Reinhard German & Stefan Will, 2021. "Simulation of the Part Load Behavior of Combined Heat Pump-Organic Rankine Cycle Systems," Energies, MDPI, vol. 14(13), pages 1-18, June.
    13. Wang, Penglai & Li, Qibin & Wang, Shukun & He, Chao & Tang, Junrong, 2023. "Thermo-economic analysis and comparative study of different thermally integrated pumped thermal electricity storage systems," Renewable Energy, Elsevier, vol. 217(C).
    14. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    15. Yang, Fubin & Zhang, Hongguang & Bei, Chen & Song, Songsong & Wang, Enhua, 2015. "Parametric optimization and performance analysis of ORC (organic Rankine cycle) for diesel engine waste heat recovery with a fin-and-tube evaporator," Energy, Elsevier, vol. 91(C), pages 128-141.
    16. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    18. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    19. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
    20. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:371:y:2024:i:c:s0306261924010766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.