IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v250y2022ics036054422200740x.html
   My bibliography  Save this article

Battery electric vehicle usage pattern analysis driven by massive real-world data

Author

Listed:
  • Cui, Dingsong
  • Wang, Zhenpo
  • Liu, Peng
  • Wang, Shuo
  • Zhang, Zhaosheng
  • Dorrell, David G.
  • Li, Xiaohui

Abstract

Electric vehicles (EVs) are playing a key role in supporting transportation electrification and reducing air pollution and greenhouse gas emissions. The increased number of EVs may also bring about some issues concerning energy system structure optimization and efficiency enhancement. User behavior analysis and simulation is an important method to solve these issues. A stochastic model for describing the usage of vehicle is essential to handle simulation models and behavior models. Therefore, a more comprehensive understanding of EV usage patterns is necessary for the model establishment. The paper focuses on the 2,047,222 charging events and 8,382,032 travel events collected from 26,606 battery electric vehicles operating in Beijing, China, in 2018, based on the open lab of National Big Data Alliance of New Energy Vehicles. With the large-scale data resource rather than limited samples, we provide some robust statistical results and some multi-dimensional comparative analysis in the paper, which can be applied in large-scale deployment environments and large population cities. The results can also provide information for charging infrastructures construction, gird management, vehicle charging scheduling, and so forth in Beijing and even other metropolises with similar situations.

Suggested Citation

  • Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhang, Zhaosheng & Dorrell, David G. & Li, Xiaohui, 2022. "Battery electric vehicle usage pattern analysis driven by massive real-world data," Energy, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:energy:v:250:y:2022:i:c:s036054422200740x
    DOI: 10.1016/j.energy.2022.123837
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200740X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123837?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    2. He, Xiaoyi & Wu, Ye & Zhang, Shaojun & Tamor, Michael A. & Wallington, Timothy J. & Shen, Wei & Han, Weijian & Fu, Lixin & Hao, Jiming, 2016. "Individual trip chain distributions for passenger cars: Implications for market acceptance of battery electric vehicles and energy consumption by plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 180(C), pages 650-660.
    3. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    4. Zhang, Xudong & Zou, Yuan & Fan, Jie & Guo, Hongwei, 2019. "Usage pattern analysis of Beijing private electric vehicles based on real-world data," Energy, Elsevier, vol. 167(C), pages 1074-1085.
    5. Lin, Haiyang & Liu, Yiling & Sun, Qie & Xiong, Rui & Li, Hailong & Wennersten, Ronald, 2018. "The impact of electric vehicle penetration and charging patterns on the management of energy hub – A multi-agent system simulation," Applied Energy, Elsevier, vol. 230(C), pages 189-206.
    6. Zou, Yuan & Wei, Shouyang & Sun, Fengchun & Hu, Xiaosong & Shiao, Yaojung, 2016. "Large-scale deployment of electric taxis in Beijing: A real-world analysis," Energy, Elsevier, vol. 100(C), pages 25-39.
    7. Iversen, Emil B. & Morales, Juan M. & Madsen, Henrik, 2014. "Optimal charging of an electric vehicle using a Markov decision process," Applied Energy, Elsevier, vol. 123(C), pages 1-12.
    8. Wang, Hewu & Zhang, Xiaobin & Ouyang, Minggao, 2015. "Energy consumption of electric vehicles based on real-world driving patterns: A case study of Beijing," Applied Energy, Elsevier, vol. 157(C), pages 710-719.
    9. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    10. Yanyan Xu & Serdar Çolak & Emre C. Kara & Scott J. Moura & Marta C. González, 2018. "Planning for electric vehicle needs by coupling charging profiles with urban mobility," Nature Energy, Nature, vol. 3(6), pages 484-493, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perugu, Harikishan & Collier, Sonya & Tan, Yi & Yoon, Seungju & Herner, Jorn, 2023. "Characterization of battery electric transit bus energy consumption by temporal and speed variation," Energy, Elsevier, vol. 263(PC).
    2. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    3. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    4. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    5. Vimal K. E. K. & Jayakrishna Kandasamy & Vezhavendhan R. & Bostine Bose & Arun Kumar Menon & Sivakumar K., 2024. "Digital technology adoption model for electric vehicle battery recycling supply chain - an influential relationship mapping," Operations Management Research, Springer, vol. 17(4), pages 1469-1508, December.
    6. Mariusz Graba & Jarosław Mamala & Andrzej Bieniek & Andrzej Augustynowicz & Krystian Czernek & Andżelika Krupińska & Sylwia Włodarczak & Marek Ochowiak, 2023. "Assessment of Energy Demand for PHEVs in Year-Round Operating Conditions," Energies, MDPI, vol. 16(14), pages 1-19, July.
    7. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    8. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    9. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    10. Zhao, Yiwen & Deng, Junjun & Liu, Peng & Zhang, Lei & Cui, Dingsong & Wang, Qiushi & Sun, Zhenyu & Wang, Zhenpo, 2025. "Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems," Applied Energy, Elsevier, vol. 377(PC).
    11. Li, Zhen & Niu, Shuwen & Halleck Vega, Sol Maria & Wang, Jinnian & Wang, Dakang & Yang, Xiankun, 2024. "Electrification and residential well-being in China," Energy, Elsevier, vol. 294(C).
    12. Zhan, Weipeng & Wang, Zhenpo & Deng, Junjun & Liu, Peng & Cui, Dingsong, 2024. "Integrating system dynamics and agent-based modeling: A data-driven framework for predicting electric vehicle market penetration and GHG emissions reduction under various incentives scenarios," Applied Energy, Elsevier, vol. 372(C).
    13. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    14. Li, Jizi & Liu, Fangbing & Zhang, Justin Z. & Tong, Zeping, 2023. "Optimal configuration of electric vehicle battery recycling system under across-network cooperation," Applied Energy, Elsevier, vol. 338(C).
    15. Meng, Yihao & Zou, Yuan & Ji, Chengda & Zhai, Jianyang & Zhang, Xudong & Zhang, Zhaolong, 2024. "Data-driven electric vehicle usage and charging analysis of logistics vehicle in Shenzhen, China," Energy, Elsevier, vol. 307(C).
    16. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    17. Sheng, Yujie & Zeng, Hongtai & Guo, Qinglai & Yu, Yang & Li, Qiang, 2023. "Impact of customer portrait information superiority on competitive pricing of EV fast-charging stations," Applied Energy, Elsevier, vol. 348(C).
    18. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    19. Wang, Shengyou & Zhuge, Chengxiang & Shao, Chunfu & Wang, Pinxi & Yang, Xiong & Wang, Shiqi, 2023. "Short-term electric vehicle charging demand prediction: A deep learning approach," Applied Energy, Elsevier, vol. 340(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    2. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    3. Calearo, Lisa & Marinelli, Mattia & Ziras, Charalampos, 2021. "A review of data sources for electric vehicle integration studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Zhao, Yinan & Wen, Yifan & Wang, Fang & Tu, Wei & Zhang, Shaojun & Wu, Ye & Hao, Jiming, 2023. "Feasibility, economic and carbon reduction benefits of ride-hailing vehicle electrification by coupling travel trajectory and charging infrastructure data," Applied Energy, Elsevier, vol. 342(C).
    5. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    6. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    7. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    8. Ruisheng Wang & Qiang Xing & Zhong Chen & Ziqi Zhang & Bo Liu, 2022. "Modeling and Analysis of Electric Vehicle User Behavior Based on Full Data Chain Driven," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    9. Mingdong Sun & Chunfu Shao & Chengxiang Zhuge & Pinxi Wang & Xiong Yang & Shiqi Wang, 2022. "Uncovering travel and charging patterns of private electric vehicles with trajectory data: evidence and policy implications," Transportation, Springer, vol. 49(5), pages 1409-1439, October.
    10. Xie, Tuo & Yun, Xinyao & Zhang, Gang & Li, Hua & Zhang, Kaoshe & Wang, Ruogu, 2024. "Charging station cluster load prediction: Spatiotemporal multi-graph fusion technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    11. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    12. Shi, Xiao & Pan, Jian & Wang, Hewu & Cai, Hua, 2019. "Battery electric vehicles: What is the minimum range required?," Energy, Elsevier, vol. 166(C), pages 352-358.
    13. Lizana, Jesus & Friedrich, Daniel & Renaldi, Renaldi & Chacartegui, Ricardo, 2018. "Energy flexible building through smart demand-side management and latent heat storage," Applied Energy, Elsevier, vol. 230(C), pages 471-485.
    14. Zhao, Yang & Jiang, Ziyue & Chen, Xinyu & Liu, Peng & Peng, Tianduo & Shu, Zhan, 2023. "Toward environmental sustainability: data-driven analysis of energy use patterns and load profiles for urban electric vehicle fleets," Energy, Elsevier, vol. 285(C).
    15. Ji, Wei, 2018. "Data-Driven Behavior Analysis and Implications in Plug-in Electric Vehicle Policy Studies," Institute of Transportation Studies, Working Paper Series qt6dw4d18t, Institute of Transportation Studies, UC Davis.
    16. Moon, Sang-Keun & Kim, Jin-O, 2017. "Balanced charging strategies for electric vehicles on power systems," Applied Energy, Elsevier, vol. 189(C), pages 44-54.
    17. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Dorrell, David G. & Li, Xiaohui & Zhan, Weipeng, 2023. "Operation optimization approaches of electric vehicle battery swapping and charging station: A literature review," Energy, Elsevier, vol. 263(PE).
    18. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
    19. Mowry, Andrew M. & Mallapragada, Dharik S., 2021. "Grid impacts of highway electric vehicle charging and role for mitigation via energy storage," Energy Policy, Elsevier, vol. 157(C).
    20. Lin, Haiyang & Fu, Kun & Wang, Yu & Sun, Qie & Li, Hailong & Hu, Yukun & Sun, Bo & Wennersten, Ronald, 2019. "Characteristics of electric vehicle charging demand at multiple types of location - Application of an agent-based trip chain model," Energy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:250:y:2022:i:c:s036054422200740x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.