IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020154.html
   My bibliography  Save this article

Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems

Author

Listed:
  • Zhao, Yiwen
  • Deng, Junjun
  • Liu, Peng
  • Zhang, Lei
  • Cui, Dingsong
  • Wang, Qiushi
  • Sun, Zhenyu
  • Wang, Zhenpo

Abstract

Precise fault identification and evaluation of battery systems are indispensably required to facilitate safe and durable operation for electric vehicles. With the core objective of addressing the challenges of inaccurate evaluation and misdiagnoses of multi-fault in existing methods, this paper proposes a deep-learning-powered diagnosis and evaluation scheme for series-connected battery systems. First, we conduct series-connected cycling experiments to simulate the two most common faults including capacity anomaly fault and short circuit fault happening concurrently to observe the failure phenomena of different faulty batteries and fault-free batteries. Then, the evolutional processes of various faults are analyzed and compared for a deeper understanding of the battery fault mechanism. In addition, we establish an elaborate deep-learning-based model, achieving satisfactory realizations on predicting the reference voltage (with the mean square error of 7.84 × 10−5 V) while categorizing the current fault state (with an accuracy of 98.2 %). At last, a comprehensive fault identification and quantification strategy is constructed to minimize the misdiagnosis. All proposed methodologies demonstrate the advancement compared to other state-of-the-art algorithms. And the results are thoroughly validated with two different experimental datasets and real-world cloud vehicle datasets, affirming the efficiency and practical applicability, contributing to enhancing the active safety capabilities of battery systems.

Suggested Citation

  • Zhao, Yiwen & Deng, Junjun & Liu, Peng & Zhang, Lei & Cui, Dingsong & Wang, Qiushi & Sun, Zhenyu & Wang, Zhenpo, 2025. "Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020154
    DOI: 10.1016/j.apenergy.2024.124632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    2. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
    3. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhang, Zhaosheng & Dorrell, David G. & Li, Xiaohui, 2022. "Battery electric vehicle usage pattern analysis driven by massive real-world data," Energy, Elsevier, vol. 250(C).
    4. Jingzhao Zhang & Yanan Wang & Benben Jiang & Haowei He & Shaobo Huang & Chen Wang & Yang Zhang & Xuebing Han & Dongxu Guo & Guannan He & Minggao Ouyang, 2023. "Realistic fault detection of li-ion battery via dynamical deep learning," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
    6. T. M. M. Heenan & I. Mombrini & A. Llewellyn & S. Checchia & C. Tan & M. J. Johnson & A. Jnawali & G. Garbarino & R. Jervis & D. J. L. Brett & M. Michiel & P. R. Shearing, 2023. "Mapping internal temperatures during high-rate battery applications," Nature, Nature, vol. 617(7961), pages 507-512, May.
    7. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yiming & Ge, Xiaohua & Shen, Weixiang, 2024. "Multi-objective nonlinear observer design for multi-fault detection of lithium-ion battery in electric vehicles," Applied Energy, Elsevier, vol. 362(C).
    2. Xu, Yiming & Ge, Xiaohua & Guo, Ruohan & Shen, Weixiang, 2025. "Recent advances in model-based fault diagnosis for lithium-ion batteries: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    3. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean & Jiao, Zhipeng, 2024. "Fault diagnosis of early internal short circuit for power battery systems based on the evolution of the cell charging voltage slope in variable voltage window," Applied Energy, Elsevier, vol. 376(PB).
    4. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    5. Li, Shuowei & Zhang, Caiping & Du, Jingcai & Zhang, Linjing & Jiang, Yan, 2025. "Feature engineering-driven multi-scale voltage anomaly detection for Lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 377(PC).
    6. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
    7. Zhao, Xinze & Sun, Bingxiang & Zhang, Weige & He, Xitian & Ma, Shichang & Zhang, Junwei & Liu, Xiaopeng, 2024. "Error theory study on EKF-based SOC and effective error estimation strategy for Li-ion batteries," Applied Energy, Elsevier, vol. 353(PA).
    8. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    9. Daniels, Rojo Kurian & Langeh, Harsh & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Faulty cell prediction accuracy comparison of machine learning algorithms using temperature sensor placement optimization approach in immersion cooled Li-ion battery modules," Applied Energy, Elsevier, vol. 367(C).
    10. Yang, Qifan & Sun, Jinlei & Kang, Yongzhe & Ma, Hongzhong & Duan, Dawei, 2023. "Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model," Energy, Elsevier, vol. 276(C).
    11. Song, Youngbin & Park, Shina & Kim, Sang Woo, 2023. "Model-free quantitative diagnosis of internal short circuit for lithium-ion battery packs under diverse operating conditions," Applied Energy, Elsevier, vol. 352(C).
    12. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    13. Jinrui Nan & Bo Deng & Wanke Cao & Jianjun Hu & Yuhua Chang & Yili Cai & Zhiwei Zhong, 2022. "Big Data-Based Early Fault Warning of Batteries Combining Short-Text Mining and Grey Correlation," Energies, MDPI, vol. 15(15), pages 1-19, July.
    14. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    15. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    16. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    17. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    18. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    19. Yu, Quanqing & Dai, Lei & Xiong, Rui & Chen, Zeyu & Zhang, Xin & Shen, Weixiang, 2022. "Current sensor fault diagnosis method based on an improved equivalent circuit battery model," Applied Energy, Elsevier, vol. 310(C).
    20. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.