IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020154.html
   My bibliography  Save this article

Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems

Author

Listed:
  • Zhao, Yiwen
  • Deng, Junjun
  • Liu, Peng
  • Zhang, Lei
  • Cui, Dingsong
  • Wang, Qiushi
  • Sun, Zhenyu
  • Wang, Zhenpo

Abstract

Precise fault identification and evaluation of battery systems are indispensably required to facilitate safe and durable operation for electric vehicles. With the core objective of addressing the challenges of inaccurate evaluation and misdiagnoses of multi-fault in existing methods, this paper proposes a deep-learning-powered diagnosis and evaluation scheme for series-connected battery systems. First, we conduct series-connected cycling experiments to simulate the two most common faults including capacity anomaly fault and short circuit fault happening concurrently to observe the failure phenomena of different faulty batteries and fault-free batteries. Then, the evolutional processes of various faults are analyzed and compared for a deeper understanding of the battery fault mechanism. In addition, we establish an elaborate deep-learning-based model, achieving satisfactory realizations on predicting the reference voltage (with the mean square error of 7.84 × 10−5 V) while categorizing the current fault state (with an accuracy of 98.2 %). At last, a comprehensive fault identification and quantification strategy is constructed to minimize the misdiagnosis. All proposed methodologies demonstrate the advancement compared to other state-of-the-art algorithms. And the results are thoroughly validated with two different experimental datasets and real-world cloud vehicle datasets, affirming the efficiency and practical applicability, contributing to enhancing the active safety capabilities of battery systems.

Suggested Citation

  • Zhao, Yiwen & Deng, Junjun & Liu, Peng & Zhang, Lei & Cui, Dingsong & Wang, Qiushi & Sun, Zhenyu & Wang, Zhenpo, 2025. "Enhancing battery durable operation: Multi-fault diagnosis and safety evaluation in series-connected lithium-ion battery systems," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020154
    DOI: 10.1016/j.apenergy.2024.124632
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.