IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v183y2016icp1098-1111.html
   My bibliography  Save this article

Maximizing fuel production rates in isothermal solar thermochemical fuel production

Author

Listed:
  • Davenport, Timothy C.
  • Yang, Chih-Kai
  • Kucharczyk, Christopher J.
  • Ignatowich, Michael J.
  • Haile, Sossina M.

Abstract

Production of chemical fuels by isothermal pressure-swing cycles has recently generated significant interest. In this process a reactive oxide is cyclically exposed to an inert gas, which induces partial reduction of the oxide, and to an oxidizing gas of either H2O or CO2, which reoxidizes the oxide, releasing H2 or CO. At sufficiently high temperatures and sufficiently low gas flow rates, both the reduction and oxidation steps become limited only by the flow of gas across the material and not by material kinetic factors. In this contribution, we develop a numerical model describing fuel production rates in this gas-phase limited regime. The implications of this behavior are explored under all possible isothermal pressure-swing cycling conditions, and the outcome is optimized in terms of fuel production rate as well as fuel conversion and utilization of input gas of all types. Fuel production rate is maximized at infinitesimally small cycle times and attains a value that is independent of material thermodynamics. Gas utilization is maximized at infinitesimally small gas inputs, but the values can be made independent of cycle time, depending on manipulation of flow conditions. Gas-phase conditions (temperature, oxidant and reductant gas partial pressures, and CO2 vs H2O as oxidant) have a strong impact on fuel production metrics. Under realistic, finite cycle times, material thermodynamics play a measurable role in establishing fuel production rates.

Suggested Citation

  • Davenport, Timothy C. & Yang, Chih-Kai & Kucharczyk, Christopher J. & Ignatowich, Michael J. & Haile, Sossina M., 2016. "Maximizing fuel production rates in isothermal solar thermochemical fuel production," Applied Energy, Elsevier, vol. 183(C), pages 1098-1111.
  • Handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1098-1111
    DOI: 10.1016/j.apenergy.2016.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916313162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agrafiotis, Christos & Roeb, Martin & Sattler, Christian, 2015. "A review on solar thermal syngas production via redox pair-based water/carbon dioxide splitting thermochemical cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 254-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Meng & Reinhold, Jan & Monnerie, Nathalie & Haussener, Sophia, 2018. "Modeling and design guidelines for direct steam generation solar receivers," Applied Energy, Elsevier, vol. 216(C), pages 761-776.
    2. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    3. Lidor, A. & Fend, T. & Roeb, M. & Sattler, C., 2021. "High performance solar receiver–reactor for hydrogen generation," Renewable Energy, Elsevier, vol. 179(C), pages 1217-1232.
    4. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    5. Jiang, Boshu & Guene Lougou, Bachirou & Zhang, Hao & Geng, Boxi & Wu, Lianxuan & Shuai, Yong, 2022. "Preparation and solar thermochemical properties analysis of NiFe2O4@SiC/ @Si3N4 for high-performance CO2-splitting," Applied Energy, Elsevier, vol. 328(C).
    6. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    7. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    8. Gao, Yibo & Mao, Yanpeng & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong & Chen, Guifang & Chen, Shouyan, 2020. "Efficient generation of hydrogen by two-step thermochemical cycles: Successive thermal reduction and water splitting reactions using equal-power microwave irradiation and a high entropy material," Applied Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Moser & Matteo Pecchi & Thomas Fend, 2019. "Techno-Economic Assessment of Solar Hydrogen Production by Means of Thermo-Chemical Cycles," Energies, MDPI, vol. 12(3), pages 1-17, January.
    2. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    3. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    4. Stefano Padula & Claudio Tregambi & Maurizio Troiano & Almerinda Di Benedetto & Piero Salatino & Gianluca Landi & Roberto Solimene, 2022. "Chemical Looping Reforming with Perovskite-Based Catalysts for Thermochemical Energy Storage," Energies, MDPI, vol. 15(22), pages 1-15, November.
    5. Margherita Perrero & Davide Papurello, 2023. "Solar Disc Concentrator: Material Selection for the Receiver," Energies, MDPI, vol. 16(19), pages 1-11, September.
    6. Rahul R. Bhosale & Shelby Adams & Zachary Allen & Gabrielle Bennett & Edvinas Berezniovas & Taylor Bishop & Michael Bonnema & Sequoia Clutter & Ryan Fagan & Jordan Halabrin & Mason Hobbs & Daniel Hunt, 2024. "Assessing the Viability of GeO 2 /GeO Redox Thermochemical Cycle for Converting CO 2 into Solar Fuels," Sustainability, MDPI, vol. 16(6), pages 1-20, March.
    7. Liu, Xiangyu & Hong, Hui & Zhang, Hao & Cao, Yali & Qu, Wanjun & Jin, Hongguang, 2020. "Solar methanol by hybridizing natural gas chemical looping reforming with solar heat," Applied Energy, Elsevier, vol. 277(C).
    8. Gokon, Nobuyuki & Suda, Toshinori & Kodama, Tatsuya, 2015. "Oxygen and hydrogen productivities and repeatable reactivity of 30-mol%-Fe-, Co-, Ni-, Mn-doped CeO2−δ for thermochemical two-step water-splitting cycle," Energy, Elsevier, vol. 90(P2), pages 1280-1289.
    9. Lu, Chunqiang & Li, Kongzhai & Wang, Hua & Zhu, Xing & Wei, Yonggang & Zheng, Min & Zeng, Chunhua, 2018. "Chemical looping reforming of methane using magnetite as oxygen carrier: Structure evolution and reduction kinetics," Applied Energy, Elsevier, vol. 211(C), pages 1-14.
    10. Villafán-Vidales, H.I. & Arancibia-Bulnes, C.A. & Riveros-Rosas, D. & Romero-Paredes, H. & Estrada, C.A., 2017. "An overview of the solar thermochemical processes for hydrogen and syngas production: Reactors, and facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 894-908.
    11. Liu, Xiangyu & Zhang, Hao & Hong, Hui & Jin, Hongguang, 2020. "Experimental study on honeycomb reactor using methane via chemical looping cycle for solar syngas," Applied Energy, Elsevier, vol. 268(C).
    12. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    13. Yilmaz, Fatih & Balta, M. Tolga & Selbaş, Reşat, 2016. "A review of solar based hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 171-178.
    14. Yadav, Deepak & Banerjee, Rangan, 2016. "A review of solar thermochemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 497-532.
    15. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    16. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Gokon, Nobuyuki & Yamaguchi, Tomoya & Kodama, Tatsuya, 2016. "Cyclic thermal storage/discharge performances of a hypereutectic Cu-Si alloy under vacuum for solar thermochemical process," Energy, Elsevier, vol. 113(C), pages 1099-1108.
    18. Fosheim, Jesse R. & Hathaway, Brandon J. & Davidson, Jane H., 2019. "High efficiency solar chemical-looping methane reforming with ceria in a fixed-bed reactor," Energy, Elsevier, vol. 169(C), pages 597-612.
    19. Bellos, Evangelos & Tzivanidis, Christos & Tsimpoukis, Dimitrios, 2018. "Enhancing the performance of parabolic trough collectors using nanofluids and turbulators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 358-375.
    20. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:183:y:2016:i:c:p:1098-1111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.