Thermodynamic performance assessment of solar based Sulfur-Iodine thermochemical cycle for hydrogen generation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.08.121
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ozbilen, Ahmet & Dincer, Ibrahim & Rosen, Marc A., 2014. "Development of new heat exchanger network designs for a four-step Cu–Cl cycle for hydrogen production," Energy, Elsevier, vol. 77(C), pages 338-351.
- Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
- Tsatsaronis, George & Kapanke, Kerstin & María Blanco Marigorta, Ana, 2008. "Exergoeconomic estimates for a novel zero-emission process generating hydrogen and electric power," Energy, Elsevier, vol. 33(2), pages 321-330.
- García, Lázaro & González, Daniel & García, Carlos & García, Laura & Brayner, Carlos, 2013. "Efficiency of the sulfur–iodine thermochemical water splitting process for hydrogen production based on ADS (accelerator driven system)," Energy, Elsevier, vol. 57(C), pages 469-477.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiao, Fan & Lu, Buchu & Chen, Chen & Liu, Qibin, 2021. "Exergy transfer and degeneration in thermochemical cycle reactions for hydrogen production: Novel exergy- and energy level-based methods," Energy, Elsevier, vol. 219(C).
- González Rodríguez, Daniel & Brayner de Oliveira Lira, Carlos Alberto & García Parra, Lázaro Roger & García Hernández, Carlos Rafael & de la Torre Valdés, Raciel, 2018. "Computational model of a sulfur-iodine thermochemical water splitting system coupled to a VHTR for nuclear hydrogen production," Energy, Elsevier, vol. 147(C), pages 1165-1176.
- Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
- Lu, Buchu & Jiao, Fan & Chen, Chen & Yan, Xiangyu & Liu, Qibin, 2023. "Temperature-entropy and energy utilization diagrams for energy, exergy, and energy level analysis in solar water splitting reactions," Energy, Elsevier, vol. 284(C).
- Zenon Ziobrowski & Adam Rotkegel, 2024. "Assessment of Hydrogen Energy Industry Chain Based on Hydrogen Production Methods, Storage, and Utilization," Energies, MDPI, vol. 17(8), pages 1-22, April.
- Sun, Xue & Li, Xiaofei & Zeng, Jingxin & Song, Qiang & Yang, Zhen & Duan, Yuanyuan, 2023. "Energy and exergy analysis of a novel solar-hydrogen production system with S–I thermochemical cycle," Energy, Elsevier, vol. 283(C).
- Qing, Xia, 2024. "Solar-driven multi-generation system: Thermoeconomic and environmental optimization for power, cooling, and liquefied hydrogen production," Energy, Elsevier, vol. 293(C).
- Razi, Faran & Dincer, Ibrahim & Gabriel, Kamiel, 2020. "Energy and exergy analyses of a new integrated thermochemical copper-chlorine cycle for hydrogen production," Energy, Elsevier, vol. 205(C).
- Ni, Hang & Peng, Wei & Qu, Xinhe & Zhao, Gang & Zhang, Ping & Wang, Jie, 2022. "Thermodynamic analysis of a novel hydrogen–electricity–heat polygeneration system based on a very high-temperature gas-cooled reactor," Energy, Elsevier, vol. 249(C).
- Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Ni, Hang & Qu, Xinhe & Peng, Wei & Zhao, Gang & Zhang, Ping, 2023. "Study of two innovative hydrogen and electricity co-production systems based on very-high-temperature gas-cooled reactors," Energy, Elsevier, vol. 273(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aghbashlo, Mortaza & Hosseinpour, Soleiman & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2016. "On the exergetic optimization of continuous photobiological hydrogen production using hybrid ANFIS–NSGA-II (adaptive neuro-fuzzy inference system–non-dominated sorting genetic algorithm-II)," Energy, Elsevier, vol. 96(C), pages 507-520.
- Kanoglu, Mehmet & Ayanoglu, Abdulkadir & Abusoglu, Aysegul, 2011. "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system," Energy, Elsevier, vol. 36(7), pages 4422-4433.
- Temiz, Mert & Dincer, Ibrahim, 2021. "Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems," Energy, Elsevier, vol. 219(C).
- Sadeghi, Shayan & Ghandehariun, Samane, 2022. "A standalone solar thermochemical water splitting hydrogen plant with high-temperature molten salt: Thermodynamic and economic analyses and multi-objective optimization," Energy, Elsevier, vol. 240(C).
- Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
- Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
- Michalsky, Ronald & Parman, Bryon J. & Amanor-Boadu, Vincent & Pfromm, Peter H., 2012. "Solar thermochemical production of ammonia from water, air and sunlight: Thermodynamic and economic analyses," Energy, Elsevier, vol. 42(1), pages 251-260.
- Manassaldi, Juan I. & Mussati, Sergio F. & Scenna, Nicolás J., 2011. "Optimal synthesis and design of Heat Recovery Steam Generation (HRSG) via mathematical programming," Energy, Elsevier, vol. 36(1), pages 475-485.
- Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
- Mohammad Hossein Ahmadi & Seyed Ali Banihashem & Mahyar Ghazvini & Milad Sadeghzadeh, 2018. "Thermo-economic and exergy assessment and optimization of performance of a hydrogen production system by using geothermal energy," Energy & Environment, , vol. 29(8), pages 1373-1392, December.
- Fan, Guangli & Ahmadi, A. & Ehyaei, M.A. & Das, Biplab, 2021. "Energy, exergy, economic and exergoenvironmental analyses of polygeneration system integrated gas cycle, absorption chiller, and Copper-Chlorine thermochemical cycle to produce power, cooling, and hyd," Energy, Elsevier, vol. 222(C).
- Ligang Wang & Yongping Yang & Changqing Dong & Zhiping Yang & Gang Xu & Lingnan Wu, 2012. "Exergoeconomic Evaluation of a Modern Ultra-Supercritical Power Plant," Energies, MDPI, vol. 5(9), pages 1-17, September.
- Huang, Kefeng & Karimi, I.A., 2016. "Work-heat exchanger network synthesis (WHENS)," Energy, Elsevier, vol. 113(C), pages 1006-1017.
- Jarosław Gryz & Krzysztof Król & Anna Witkowska & Mariusz Ruszel, 2021. "Mobile Nuclear-Hydrogen Synergy in NATO Operations," Energies, MDPI, vol. 14(23), pages 1-12, November.
- de Souza, Sergio Alencar & Lamas, Wendell de Queiroz, 2014. "Thermoeconomic and ecological analysis applied to heating industrial process in chemical reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 96-107.
- Razi, Faran & Hewage, Kasun & Sadiq, Rehan, 2024. "A comparative exergoenvironmental assessment of thermochemical copper-chlorine cycles for sustainable hydrogen production," Energy, Elsevier, vol. 300(C).
- Tsatsaronis, George & Morosuk, Tatiana & Koch, Daniela & Sorgenfrei, Max, 2013. "Understanding the thermodynamic inefficiencies in combustion processes," Energy, Elsevier, vol. 62(C), pages 3-11.
- Norouzi, Maryam & Yeganeh, Mansour & Yusaf, Talal, 2021. "Landscape framework for the exploitation of renewable energy resources and potentials in urban scale (case study: Iran)," Renewable Energy, Elsevier, vol. 163(C), pages 300-319.
- Darabadi Zare, Ali Akbar & Yari, Mortaza, 2024. "Techno economic analysis of efficient and environmentally friendly methods for hydrogen, power, and heat production using chemical looping combustion integrating plastic waste gasification and thermoc," Energy, Elsevier, vol. 289(C).
- Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
More about this item
Keywords
Energy; Exergy; Hydrogen generation; Thermochemical cycle; Sulfur-Iodine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:520-529. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.