IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923005251.html
   My bibliography  Save this article

A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal

Author

Listed:
  • Chen, Jing
  • Kong, Hui
  • Wang, Hongsheng

Abstract

Solar-driven two-step thermochemical cycling is a promising means to convert solar energy into storable and transportable chemical fuel, in which hydrogen or carbon monoxide is generated by continuous reduction and oxidation reactions. However, the high energy consumption of deoxygenation in the reduction step is an important factor restricting its efficiency improvement. In this work, we propose a fuel production system with thermochemical cycles coupled with chemical-looping cycles, which uses the chemical-looping cycle oxidation reaction at relatively low temperature to absorb the oxygen produced by the thermochemical cycle reduction reaction. The oxygen-carriers in the chemical-looping cycle can be reduced by adding reductants or direct heating with waste heat from the thermochemical cycle. The coupled system can remove the oxygen in the thermochemical cycle reduction reaction and reduce the energy consumption in this process. In addition to the hydrogen production, waste heat from the thermochemical cycle can also be used in the chemical-looping cycle to generate extra electricity. Theoretical calculation results show that in the oxidation temperature range of 900–1100 °C, the energy consumption for separating oxygen from inert gas after sweeping in the traditional thermochemical cycle accounts for 30–57% of the total energy consumption, while the chemical-looping cycle part in the coupled system accounts for 26–36%. The coupled system can improve the solar-to-fuel efficiency by 45.9% to 20.9% and improve the solar-to-electricity efficiency by 104.1% to 14.6% without heat recovery compared to traditional thermochemical cycles when the reduction temperature is 1500 °C. Under the conditions of 20% solid-state heat recovery and 90% gas-state heat recovery, the coupled system achieves a solar-to-fuel efficiency of 28.1%. In addition, we also put forward a vacuum pump, inert gas and chemical-looping cycles combined oxygen removal method. Since the vacuum pump has high efficiency and fast deoxygenation speed in the low vacuum interval, the system efficiency can be further improved. Our research can provide a new solution to the high energy consumption of deoxygenation in thermochemical cycles.

Suggested Citation

  • Chen, Jing & Kong, Hui & Wang, Hongsheng, 2023. "A novel high-efficiency solar thermochemical cycle for fuel production based on chemical-looping cycle oxygen removal," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005251
    DOI: 10.1016/j.apenergy.2023.121161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923005251
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kawabe, M. & Ono, H. & Sano, T. & Tsuji, M. & Tamaura, Y., 1997. "Thermochemical oxygen pump with praseodymium oxides using a temperature-swing at 403–873 K," Energy, Elsevier, vol. 22(11), pages 1041-1049.
    2. Kong, Hui & Kong, Xianghui & Wang, Jian & Zhang, Jun, 2019. "Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production," Energy, Elsevier, vol. 179(C), pages 1279-1287.
    3. Haeussler, Anita & Abanades, Stéphane & Julbe, Anne & Jouannaux, Julien & Cartoixa, Bruno, 2020. "Solar thermochemical fuel production from H2O and CO2 splitting via two-step redox cycling of reticulated porous ceria structures integrated in a monolithic cavity-type reactor," Energy, Elsevier, vol. 201(C).
    4. Lapp, J. & Davidson, J.H. & Lipiński, W., 2012. "Efficiency of two-step solar thermochemical non-stoichiometric redox cycles with heat recovery," Energy, Elsevier, vol. 37(1), pages 591-600.
    5. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Kong, Hui & Hao, Yong & Jin, Hongguang, 2018. "Isothermal versus two-temperature solar thermochemical fuel synthesis: A comparative study," Applied Energy, Elsevier, vol. 228(C), pages 301-308.
    7. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    8. Lin, Meng & Haussener, Sophia, 2015. "Solar fuel processing efficiency for ceria redox cycling using alternative oxygen partial pressure reduction methods," Energy, Elsevier, vol. 88(C), pages 667-679.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    2. Liang, Shen & Zheng, Hongfei & Kang, Huifang & Zhao, Zhiyong & Ma, Xinglong & Zhu, Ziye & Cheng, Haiying & Yang, Jinrui, 2024. "Optical and electrical behavior of an underwater linear-focusing solar concentrating photovoltaic," Renewable Energy, Elsevier, vol. 221(C).
    3. Zhang, Jiateng & Wang, Hongsheng & Dai, Fei & Kong, Hui, 2024. "Thermodynamic analysis of the coal-driven solar thermochemical cycle for hydrogen production," Applied Energy, Elsevier, vol. 375(C).
    4. Wu, Zhicong & Xu, Gang & Ge, Shiyu & Liang, Shixing & Xue, Xiaojun & Chen, Heng, 2024. "An efficient methanol pre-reforming gas turbine combined cycle with mid-temperature energy upgradation: Thermodynamic and economic analysis," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bo & Li, Xian & Zhu, Xuancan & Wang, Yuesen & Tian, Tian & Dai, Yanjun & Wang, Chi-Hwa, 2023. "An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization," Energy, Elsevier, vol. 270(C).
    2. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    3. Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
    4. Kong, Hui & Kong, Xianghui & Wang, Jian & Zhang, Jun, 2019. "Thermodynamic analysis of a solar thermochemical cycle-based direct coal liquefaction system for oil production," Energy, Elsevier, vol. 179(C), pages 1279-1287.
    5. Ma, Tianzeng & Fu, Mingkai & Cong, Jian & Zhang, Xia & Zhang, Qiangqiang & Sayfieva, Khurshida F. & Chang, Zheshao & Li, Xin, 2024. "Analysis of heat and mass transfer in a porous solar thermochemical reactor," Energy, Elsevier, vol. 294(C).
    6. Kong, Hui & Wang, Jian & Zheng, Hongfei & Wang, Hongsheng & Zhang, Jun & Yu, Zhufeng & Bo, Zheng, 2022. "Techno-economic analysis of a solar thermochemical cycle-based direct coal liquefaction system for low-carbon oil production," Energy, Elsevier, vol. 239(PC).
    7. Kong, Hui & Li, Zheng & Yu, Zhufeng & Zhang, Jun & Wang, Hongsheng & Wang, Jian & Gao, Dan, 2021. "Environmental and economic multi-objective optimization of comprehensive energy industry: A case study," Energy, Elsevier, vol. 237(C).
    8. Imponenti, Luca & Albrecht, Kevin J. & Kharait, Rounak & Sanders, Michael D. & Jackson, Gregory S., 2018. "Redox cycles with doped calcium manganites for thermochemical energy storage to 1000 °C," Applied Energy, Elsevier, vol. 230(C), pages 1-18.
    9. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    10. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    11. Li, Tailu & Zhu, Jialing & Hu, Kaiyong & Kang, Zhenhua & Zhang, Wei, 2014. "Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield," Energy, Elsevier, vol. 68(C), pages 680-687.
    12. Vélez, Fredy & Segovia, José J. & Martín, M. Carmen & Antolín, Gregorio & Chejne, Farid & Quijano, Ana, 2012. "A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4175-4189.
    13. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    14. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    15. Chen, Jie & Huang, Shoujun & Shahabi, Laleh, 2021. "Economic and environmental operation of power systems including combined cooling, heating, power and energy storage resources using developed multi-objective grey wolf algorithm," Applied Energy, Elsevier, vol. 298(C).
    16. Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
    17. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    18. Golonis, Chrysanthos & Skiadopoulos, Anastasios & Manolakos, Dimitris & Kosmadakis, George, 2021. "Assessment of the performance of a low-temperature Organic Rankine Cycle engine coupled with a concentrating PV-Thermal system," Renewable Energy, Elsevier, vol. 179(C), pages 1085-1097.
    19. Sarkar, Jahar, 2015. "Review and future trends of supercritical CO2 Rankine cycle for low-grade heat conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 434-451.
    20. Bianchi, M. & Branchini, L. & De Pascale, A. & Melino, F. & Peretto, A. & Archetti, D. & Campana, F. & Ferrari, T. & Rossetti, N., 2019. "Feasibility of ORC application in natural gas compressor stations," Energy, Elsevier, vol. 173(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923005251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.